Giải dùm hết cho mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)
\(\Leftrightarrow-n^3+n⋮n^3+1\)
\(\Leftrightarrow n=1\)
127xy chia hết cho 9 <=> 1 + 2 + 7 + x + y chia hết cho 9
127xy chia hết cho 4 <=> xy chia hết cho 4
Vậy một số chia hết cho 9 <=> tổng các chữ số chia hết cho 9
một số chia hết cho 4 <=> hai chữ số tận cùng chia hết cho 4
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2
Có n2-2 chia hết cho n+3
=>n.n-2 chia hết cho n+3
=>n.n+3-5 chia hết cho n+3
=>5 chia hết cho n+3
=>n+3 thuộc Ư(5)={1;5;-1;-5}
Với n+3=1 =>n=(-2)
....
Còn lại tự lm nha bn
ta có 30x150=20xX(x !=0)
=>4500=20xX
=>X=225
vậy x=225
chúc bạn ht