chứng minh nếu \(\frac{a}{b}=\frac{c}{d}\)thì
\(\frac{2014a+2015b}{2014a-2015b}=\frac{2014c+2015d}{2014c-2015d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn xem tại đây: http://olm.vn/hoi-dap/question/119886.html
\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}=>\frac{2014.a}{2014c}=\frac{2015b}{2015d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{2014a}{2014c}=\frac{2015b}{2015d}=\frac{2014a-2015b}{2014c-2015d}=\frac{2014a+2015b}{2014c+2015d}\)
=>\(\frac{2014a-2015b}{2014c-2015d}=\frac{2014a+2015b}{2014c+2015d}\)
=> (2014a-2015b).(2014c+2015d)=(2014c-2015d).(2014a+2015b)
=>\(\frac{2014a-2015b}{2014a+2015b}=\frac{2014c-2015d}{2014c+2015d}\)
Để Cm được tỉ lệ thức trên thì ta phải Cm được
(a-2014c)*(b+2015d)=(a+2015c)*(b-2014d)
<=>ab+2015da-2014cb-2015d*2014c=ab-2014da+2015cb-2014d*2015c
<=>2015da-2014cb=-2014da+2015cb
<=>2015da+2014da=2015cb+2014cb
<=>4029da=4029cb
<=>da=cb
Mà a/b=c/d=>ad=cb
=>ta có điều phải chứng minh
từ đề bài => \(2014+\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}+2014=\frac{a^2+b^2}{c^2}+2014\)
=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}\). theo tính chất dãy tỉ số bằng nhau
=> \(\frac{b^2+c^2}{a^2}=\frac{a^2+c^2}{b^2}=\frac{a^2+b^2}{c^2}=\frac{b^2+c^2+a^2+c^2+a^2+b^2}{a^2+b^2+c^2}=\frac{2.\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=2\)
=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}=\frac{a^2}{b^2}+\frac{c^2}{b^2}=\frac{a^2}{c^2}+\frac{b^2}{c^2}=2\)=>\(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{c^2}{b^2}+\frac{a^2}{c^2}+\frac{b^2}{c^2}=2+2+2=6\)
=> \(\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{c^2}{b^2}=6:2=3\)\(P=2015.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)+\left(\frac{b^2}{c^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}\right)=2016.\left(\frac{a^2}{c^2}+\frac{b^2}{a^2}+\frac{c^2}{b^2}\right)=2016.3=6048\)
Xét \(a+b+c+d=0\) thì ta có dãy tỷ số là đúng.
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)
\(\Rightarrow M=-1-1-1-1=-4\)
Xét \(a+b+c+d\ne0\)thì ta có:
\(\frac{2015a+b+c+d}{a}=\frac{a+2015b+c+d}{b}=\frac{a+b+2015c+d}{c}=\frac{a+b+c+2015d}{d}=\frac{2018\left(a+b+c+d\right)}{a+b+c+d}=2018\)
Lấy 2 cái đầu cộng với nhau ta được:
\(\frac{2016\left(a+b\right)+2\left(c+d\right)}{a+b}=2018\)
\(\Leftrightarrow\frac{c+d}{a+b}=\frac{2018-2016}{2}=1\)
Tương tự ta cũng có:
\(\frac{a+b}{c+d}=;\frac{b+c}{d+a}=1;\frac{d+a}{b+c}=1\)
\(\Rightarrow M=1+1+1+1=4\)
giúp mk vs
gúp mk đi mk cho