Cho ∆ABC vuông tại A, đường cao AH. Đường phân giác của góc ABC cắt AC tại D và cắt AH tại E.
a)Chứng minh: tam giác ABC đồng dạng tam giác HBA và AB2 = BC.BH
b)Biết AB = 9cm, BC = 15cm. Tính DC và AD
c)Gọi I là trung điểm của ED. Chứng minh: góc BIH = góc ACB.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: AC=căn 15^2-9^2=12cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5
=>AD=4,5cm; CD=7,5cm
c: góc AED=góc BEH=90 độ-góc DBC
góc ADE=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AED=góc ADE
=>ΔADE cân tại A
mà AI là trung tuyến
nên AI vuông góc ED
=>AI vuông góc BD
=>BI*BD=BA^2=BH*BC
=>BI/BC=BH/BD
=>ΔBIH đồng dạng với ΔBCD
=>góc BIH=góc C