Cho \(a+b+c=0\). Biết \(\hept{\begin{cases}M=a\left(a+b\right)\left(a+c\right)\\N=b\left(b+c\right)\left(b+a\right)\\P=c\left(c+a\right)\left(c+b\right)\end{cases}}\)
Chứng tỏ: M=N=P
Giúp minh bài này với nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a\left(a+b+c\right)=-12\\b\left(a+b+c\right)=18\\c\left(a+b+c\right)=30\end{cases}}\)
Cộng cả 3 phương trình với nhau vế theo vế được
\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=36\)
\(\Leftrightarrow\left(a+b+c\right)^2=36\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b+c\right)=6\\\left(a+b+c\right)=-6\end{cases}}\)
Với \(\left(a+b+c\right)=6\)thì
\(\hept{\begin{cases}a=-2\\b=3\\c=5\end{cases}}\)
Với \(\left(a+b+c\right)=-6\)thì
\(\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}\)
Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2} (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
[2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2} thì xy đạt giá trị nhỏ nhất.
1,
\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)
\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)
lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)
\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
\(\Rightarrow A\ge4+3\sqrt{2}\)
câu 2
ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;a+c=-b;b+c=-a\)
THAY \(a+b=-c;a+c=-b;b+c=-a\)VÀO M;N;P TA CÓ:
\(M=a.\left(-c\right).\left(-b\right)=a.b.c\)(1)
\(N=b.\left(-a\right).\left(-c\right)=a.b.c\)(2)
\(P=c.\left(-b\right).\left(-a\right)=a.b.c\)(3)
Từ (1) ; (2) ; (3) Ta có
\(M=N=P\left(=a.b.c\right)\)(đpcm)