Cho A(x) = x3 + 2x2 + 3x + 1
B(x) = -x3 + x + 1
C(x) = 2x2-1
Tìm x sao cho A(x) + B(x) - C(x) = 0
Giúp mik với, cảm ơn ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(x^2y+xy+x+1\)
\(=xy\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(xy+1\right)\)
c) Ta có: \(ax+by+ay+bx\)
\(=a\left(x+y\right)+b\left(x+y\right)\)
\(=\left(x+y\right)\left(a+b\right)\)
`a,f(x)-g(x)+h(x)`
`=x^3-2x^2+3x+1-(x^3+x-1)+2x^2-1`
`=(x^3-x^3)+(2x^2-2x^2)+3x+1+1-1`
`=0+0+3x+1`
`=3x+1`
`b,f(x)-g(x)+h(x)=0`
`=>3x+1=0`
`=>x=-1/3`
a, \(A=2x^3-9x^5+3x^5-3x^2+7x^2-12=-6x^5+2x^3+4x^2-12\)
b, \(B=2x^4+x^2+2x-2x^3-2x^2+x^2-2x+1=2x^4-2x^3+1\)
c, \(C=2x^2+x-x^3-2x^2+x^3-x+3=3\)
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
a) \(f\left(x\right)-g\left(x\right)\) hay \(x^3-2x^2+3x+1-x^3-x+1=-2x^2+2x+2\)
b) \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\) hay \(-2x^2+2x+2+2x^2-1=2x+1\Rightarrow2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)
\(\Leftrightarrow5⋮\left(x+1\right)\)
mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)
Vậy...
b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)
\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)
Vậy...
c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)
\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)
Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Vậy...
d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)
Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)
Vậy...
\(\text{a)}f\left(x\right)-g\left(x\right)+h\left(x\right)=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=\left(x^3-x^3\right)+\left(-2x^2+2x^2\right)+\left(3x-x\right)+\left(1+1-1\right)\)
\(=2x+1\)
\(\text{b)Vì f(x)-g(x)+h(x)=0}\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x\) \(=0-1=-1\)
\(\Rightarrow\) \(x\) \(=\left(-1\right):2=\dfrac{-1}{2}\)
\(\text{Vậy x=}\dfrac{-1}{2}\text{ thì f(x)-g(x)+h(x)=0}\)
a: \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=2x^3-2x^2+4x+2x^2-1=2x^3+4x-1\)
b: f(x)-g(x)+h(x)=0
\(\Leftrightarrow2x^3+4x-1=0\)
\(\Leftrightarrow x\simeq0,2428\)
A(x)+B(x)-C(x)
=x^3+2x^2+3x+1-x^3+x+1-2x^2+1=0
=>4x+3=0
=>x=-3/4