K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2016

Ta có: n/n+11<n/n+10 và n/n+11>n-1/n+11

suy ra n-1/n+11<n/n+11<n/n+10

vậy n/n+10>n-1/n+11

19 tháng 8 2016

Chuẩn

6 tháng 12 2020

Ta có \(S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2018}{2^{2018}}+\frac{2019}{2^{2019}}\)

=> 2S = \(1+1+\frac{3}{2^2}+...+\frac{2018}{2^{2017}}+\frac{2019}{2^{2018}}\)

Khi đó 2S - S = \(\left(1+1+\frac{3}{2^2}+..+\frac{2018}{2^{2017}}+\frac{2019}{2^{2018}}\right)-\left(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2018}{2^{2018}}+\frac{2^{2019}}{2019}\right)\)

=> S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}-\frac{2019}{2^{2019}}\)

Đặt P = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\)

=> 2P = \(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)

Khi đó 2P - P = \(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\right)\)

P = \(2-\frac{1}{2^{2018}}\)

Thay P vào S 

=> S = \(2-\frac{1}{2^{2018}}-\frac{2019}{2^{2019}}=2-\frac{2}{2^{2019}}-\frac{2019}{2^{2019}}=2-\frac{2021}{2^{2019}}< 2\)

Vậy S < 2

25 tháng 5 2015

 Ta có: \(\frac{n-2}{n+9}=\frac{n}{n+9}-\frac{2}{n+9}\)(n thuộc N*). Vì \(\frac{n}{n+8}>\frac{n}{n+9}\)nên  \(\frac{n}{n+8}>\frac{n}{n+9}>\frac{n}{n+9}-\frac{2}{n+9}\)

Ta có :

\(\frac{n-2}{n+9}=\frac{n}{2+9}-\frac{2}{2+9}\)\(\left(n\in N\text{*}\right)\)

Vì \(\frac{n}{n+8}>\frac{n}{n+9}\)

\(\Rightarrow\frac{n}{n+8}>\frac{n}{n+9}>\frac{n}{n+9}-\frac{2}{n+9}\)

\(\Leftrightarrow\frac{n}{n+8}>\frac{n}{n+9}>\frac{n-2}{n+9}\)

\(\frac{\Rightarrow n}{n+8}>\frac{n-2}{n+9}\)

14 tháng 2 2016

bai toan nay kho

11 tháng 3 2016

=935 nhe bé

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?