Tìm một số chính phương có 2 chữ số sao cho mỗi chữ số đều là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu ta thêm vào mỗi chữ số của A 1 đơn vị thì số A sẽ tăng thêm 1111 đơn vị hay A + 1111 = B (1).
Đặt A = a2 và B = b2 với a,b thuộc N*.
Từ (1) => a2 + 1111 = b2 => b2 - a2 = 1111 => (a + b)(b - a) = 1111. (2)
Vì a, b thuộc N* nên a + b > b - a. (3) Ta có : 1111 = 11.101 (4)
Từ (2), (3) và (4) => a + b = 101 và b - a = 11. => a = 45 và b = 56.
=> A = 2025 và B = 3136.
gọi số tự nhiên có hai chữ số cần tìm là ab (0<a<10; 0</=a<10)
ta có: ab+ba=k2 (k thuộc N*)
<=>11a+11b=k2
<=>11(a+b)=k2
=>k2 chia hết cho 11 mà 11 là SNT =>k2 chia hết cho 112
=>11(a+b) chia hết cho 112 =>a+b chia hết cho 11
mà 0<a+b<20
=>a+b=11 Do 11=2+9=3+8=4+7=5+6
=>ab thuộc {29;92;38;83;47;74;56;65}
Chữ số hàng chục là chữ số lớn nhất chỉ chia hết cho \(1\)và chính nó nên chữ số hàng chục là chữ số \(7\).
Gọi số cần tìm là: \(\overline{a7b}\).
Ta có: \(\overline{b7a}-\overline{a7b}=693\)
\(\Leftrightarrow99\left(b-a\right)=693\)
\(\Leftrightarrow b-a=7\).
Suy ra \(a=1,b=8\)hoặc \(a=2,b=9\).
Vậy có hai số thỏa mãn yêu cầu bài toán là: \(178,279\).
đó là số : 94,49
là số 49