So sánh A= \(\frac{10^{2013}+2}{10^{2013}-1}\)và B= \(\frac{10^{2013}}{10^{2013}-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA có :
A = \(\frac{10^{2012}-2}{10^{2013}-1}\)=> 10A = \(1-\frac{19}{10^{2013}-1}\)
B = \(\frac{10^{2013}-2}{10^{2014}-1}\)=> 10B = 1 - \(\frac{19}{10^{2014}-1}\)
Vì \(1-\frac{19}{10^{2013}-1}\)< 1 - \(\frac{19}{10^{2014}-1}\)hay 10A < 10B => A < B
Vậy A < B
\(A=\frac{10^{2012}+1}{10^{2013}+1}\)
\(10A=\frac{10\cdot\left[10^{2012}+1\right]}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)
\(B=\frac{10^{2013}+1}{10^{2014}+1}\)
\(10B=\frac{10\cdot\left[10^{2013}+1\right]}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)
Mà \(1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)
Nên \(10A>10B\)
Hay \(A>B\)
Vậy : A > B
a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)
Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)
\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)
Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)
Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)
b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)
Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)
Vậy A > B
Có gì sai cho sorry
a,
\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)
b,
\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
vì B<1 => \(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\)\(\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}\)\(=\frac{10^{2012}+1}{10^{2013}+1}=A\)
\(\Rightarrow A>B\)
\(\frac{10^{2012}+1}{10^{2013}+1}=\frac{\left(10^{2012}+1\right)\cdot10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1+9}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1}{\left(10^{2013}+1\right)\cdot10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}\left(1\right)\)
\(\frac{10^{2013}+1}{10^{2014}+1}=\frac{\left(10^{2013}+1\right)\cdot10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1+9}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1}{\left(10^{2014}+1\right)\cdot10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}\left(2\right)\)Từ (1)(2) => A > B
\(\Rightarrow10A=10.\left(\frac{10^{2012}+1}{10^{2013}+1}\right)=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)
\(\Rightarrow10B=10.\left(\frac{10^{2013}+1}{10^{2014}+1}\right)=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)
Ta có: 1 = 1; 9 = 9
Mà \(10^{2013}+1<10^{2014}+1\)
=> \(\frac{9}{10^{2013}+1}>\frac{9}{10^{2014}+1}\)
=> \(1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\text{ hay }10A>10B\)
=> \(A>B\).
Minh chi biet lam cau b thoi ak
b) Giai:
B=10^16+1 tren 10^17 +1 <10^16+1+9 tren 10^17+1+9
ma 10^16+1+9 tren 10^17+1+9 = 10^16+10 tren 10^17+10
=10(10^15+1) tren 10(10^16+1)
=10^15+1 tren 10^16+1 =A
=>A>B
Cho y kien voi!
quy dong ca A va B ta dc :
\(A=\frac{-109}{10^{2014}}\)
\(B=\frac{-199}{10^{2014}}\)
\(\Rightarrow A>B\)
dễ thôi
ta có :A=-9/10^2013+-19/10^2014=-9/10^2013+-9/10^2014+-10/10^2014
B=-9/10^2014+-19/10^2013=-9/10^2014+-9/10^2013+-10/10^2013
nhìn nhé :cả A và B đều có các số hạng :-9/10^2013 và-9/10^2014
mà -10/10^2014<-10/10^2013
=>A<B