Tìm n € Z sao cho 2n - 3 chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
Ta có: \(2n-3⋮n+1\)
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow2.\left(n+1\right)-5⋮n+1\)
mà \(2.\left(n+1\right)⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tìm nốt x nhé.
Theo đề bài : 2n - 3 chia hết cho n + 1
=> 2n -3 - (n + 1) chia hết cho n + 1
=> 2n - 3 - 2(n+1) chia hết cho n + 1
=> 2n - 3 - 2n - 2 chia hết cho n + 1
=> 1 chia hết cho n + 1
=> n + 1 = { 1 ; -1}
=> n = { 0 ; -2 }
Vì n thuộc Z*
=> n = -2
Vậy n = -2
2n-3 chia hết cho x+1
=>2(n+1)-5 chia hết cho x+1
=>5 chia hết cho x+1
\(\Rightarrow x+1\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-6;-2;0;4\right\}\)
vậy x=-6;-2;0;4
Tham khảo:
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}