Cho đường thẳng d: x-y +6=0 và hai điểm A(2;2) B(3;0). Tìm điểm M thuộc d sao cho MA + MB nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-x0)^2+(y-y0)^2=R^2
I(x;x-6)
=> (x-6)^2+(x-6-4)^2=R^2
(x-4)^2+(x-6)^2=R^2
=> x^2-12x+36+x^2-20x+100=x^2-8x+16+x^2-12x+36
=>12x=84
=>x=7
=>R^2=10
`=>(7-x0)^2+(1-y0)^2=10`
Chọn A
Vì A thuộc nên A (1+2t;1-t;-1+t).
Vì B thuộc nên B (-2+3t';-1+t';2+2t').
Thay vào (3) ta được t=1, t'=2 thỏa mãn.
a.
- Đường thẳng (d) song song với y = 1 - 3x nên ta có:
\(a=-3\)
\(\rightarrow\) Hàm số có dạng \(y=-3x-2\)
- Vẽ đường thẳng \(\left(d\right):y=-3x-2\)
+ Giao với trục Oy: \(x=0\rightarrow y=-2\Rightarrow A\left(0;-2\right)\)
+ Giao với trục Ox: \(y=0\rightarrow x=-\dfrac{2}{3}\Rightarrow B\left(-\dfrac{2}{3};0\right)\)
Nối 2 điểm A và B ta được đường thẳng (d)
b.
- Gọi tọa độ giao điểm của đường thẳng \(\left(d\right)\) và \(\left(d'\right):y=x+6\) là: \(\left(x_0;y_0\right)\)
- Vì \(\left(x_0;y_0\right)\) thuộc đường thẳng \(\left(d\right)\) nên ta có:
\(y_0=-3x_0-2\) (1)
- Vì \(\left(x_0;y_0\right)\) thuộc đường thẳng \(\left(d'\right):y=x+6\) nên ta có:
\(y_0=x_0+6\) (2)
- Từ (1) và (2), ta có:
\(-3x_0-2=x_0+6\)
\(\Leftrightarrow-3x_0-x_0=6+2\)
\(\Leftrightarrow-4x_0=8\)
\(\Leftrightarrow x_0=-2\)
\(\rightarrow y_0=-2+6=4\)
Vậy tọa độ giao điểm 2 đường thẳng đó là: \(\left(-2;4\right)\)
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
\(M\in\left(d\right)\Rightarrow M\left(a;a+6\right)\Rightarrow\left\{{}\begin{matrix}MA=\sqrt{\left(a-2\right)^2+\left(a+4\right)^2}=\sqrt{2\left(a+1\right)^2+18}\\MB=\sqrt{\left(a-3\right)^2+\left(a+6\right)^2}=\sqrt{2\left(a+\dfrac{3}{2}\right)^2+\dfrac{81}{2}}=\sqrt{2\left(-\dfrac{3}{2}-a\right)^2+\dfrac{81}{2}}\end{matrix}\right.\)
\(\Rightarrow MA+MB=\sqrt{\sqrt{2}^2\left(a+1\right)^2+18}+\sqrt{\sqrt{2}^2\left(-\dfrac{3}{2}-a\right)^2+\dfrac{81}{2}}\ge\sqrt{\left(\sqrt{2}.a+\sqrt{2}-\dfrac{3}{2}.\sqrt{2}-\sqrt{2}.a\right)^2+\left(\sqrt{18}+\sqrt{\dfrac{81}{2}}\right)^2}=\sqrt{\dfrac{1}{2}+\dfrac{225}{2}}=\sqrt{133}\)
\(dấu"="xayra\Leftrightarrow\dfrac{\sqrt{2}\left(a+1\right)}{\sqrt{18}}=\dfrac{\sqrt{2}\left(-\dfrac{3}{2}-a\right)}{\sqrt{\dfrac{81}{2}}}\Leftrightarrow a=-\dfrac{6}{5}\Rightarrow M\left(-\dfrac{6}{5};\dfrac{24}{5}\right)\)