- Tính :M=1/1*2*3+1/2*3*4+1/3*4*5+...+1/10*11*12
- Chứng minh rằng :A=1/1^2+1/2^2+1/3^2+...+1/50^2<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(15-6-\dfrac{13}{18}\right):\dfrac{298}{27}-\dfrac{17}{8}:\dfrac{51}{40}\)
\(=\dfrac{149}{18}\cdot\dfrac{27}{298}-\dfrac{5}{3}=\dfrac{3}{2}-\dfrac{5}{3}=\dfrac{9-10}{6}=\dfrac{-1}{6}\)
b: \(=\dfrac{-16}{5}\cdot\dfrac{-15}{64}+\dfrac{-22}{15}:\dfrac{11}{2}\)
\(=\dfrac{3}{4}-\dfrac{4}{15}=\dfrac{29}{60}\)
c: \(=\dfrac{-7}{9}\left(\dfrac{4}{11}+\dfrac{7}{11}\right)+5+\dfrac{7}{9}=\dfrac{-7}{9}+\dfrac{7}{9}+5=5\)
d: \(=\dfrac{1}{2}\cdot\dfrac{4}{3}\cdot10\cdot\dfrac{1}{5}\cdot\dfrac{3}{4}=1\)
e: \(=\dfrac{4}{25}+\dfrac{11}{2}\cdot\dfrac{5}{2}+\dfrac{-23}{4}=\dfrac{204}{25}\)
Bài 1:
\(A=\frac{8}{7}+\frac{4}{11}(\frac{-6}{7}-\frac{5}{11})=\frac{8}{7}+\frac{-404}{847}=\frac{564}{847}\)
\(B=\frac{1}{5}.10-\frac{1}{3}.\frac{-21}{20}-\frac{1}{8}=2+\frac{7}{20}-\frac{1}{8}=\frac{89}{40}\)
Bài 2:
a.
$\frac{3}{4}+\frac{1}{4}:x=-3$
$\frac{1}{4}:x =-3-\frac{3}{4}=\frac{-15}{4}$
$x=\frac{1}{4}: \frac{-15}{4}=\frac{-1}{15}$
b.
$(x-\frac{1}{3})^2=1-\frac{5}{9}=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2$
$\Rightarrow x-\frac{1}{3}=\frac{2}{3}$ hoặc $x-\frac{1}{3}=\frac{-2}{3}$
$\Rightarrow x=1$ hoặc $x=\frac{-1}{3}$
A=\(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)
A=1+\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)
A<1+\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{49\cdot50}\)
A<1+1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
=>A<1(câu 1)
1)
a. \(\left(3x^2-50\right)^2=5^4\)
\(\Leftrightarrow3x^4-50=625\)
\(\Leftrightarrow3x^4=675\)
\(\Leftrightarrow x^4=225\)
\(\Leftrightarrow x=\sqrt{15}\)
2)
a. \(\frac{\left(3^4-3^3\right)^4}{27^3}=\frac{3^{16}-3^{12}}{\left(3^3\right)^3}=\frac{3^{12}.3^4-3^{12}}{3^9}=\frac{3^{12}\left(3^4-1\right)}{3^9}\)
\(=\frac{3^{12}.80}{3^9}=3^3.80=27.80=2160\)
b. \(\frac{25^3}{\left(5^5-5^3\right)^2}=\frac{\left(5^2\right)^3}{5^{10}-5^6}=\frac{5^6}{5^6.5^4-5^6}=\frac{5^6}{5^6\left(5^4-1\right)}\)
\(=\frac{5^6}{5^6.624}=\frac{1}{624}\)