giải p.trình sau:
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\ne-1,x\ne2\\ \Leftrightarrow2x-4-x-1=3x-11\\ 6=2x\\ x=6:2=3_{\left(tmđk\right)}\)
\(ĐK:x\ne-1;2\)
\(\Rightarrow\dfrac{2\left(x-2\right)-\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow2x-4-x-1-3x+11=0\)
\(\Leftrightarrow-2x+6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-2\right)}-\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x-4-x-1-3x+11}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow-2x+6=0\\ \Leftrightarrow x=3\left(tm\right)\)
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\\ \Leftrightarrow2x-4-x-1-3x+11=0\\ \Leftrightarrow-2x+6=0\\ \Leftrightarrow-2x=-6\\ \Leftrightarrow x=3\left(tm\right)\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)-\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow2x-4-x-1=3x-11\left(khử\cdot mẫu\right)\)
\(\Leftrightarrow2x-x-3x=-11+4+1\)
\(\Leftrightarrow-2x=-6\)
\(\Leftrightarrow x=3\)
Vậy \(S=\left\{3\right\}\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ ĐKXĐ:x\ne-1;x\ne2\\ \dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{1\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Rightarrow2x-4-x-1=3x-11\\ \Leftrightarrow2x-x-3x=-11+4+1\\ \Leftrightarrow-2x=-6\\ \Leftrightarrow x=3\left(tm\right)\)
Vậy \(S=\left\{3\right\}\)
1a.
ĐKXĐ: \(x\ne\left\{1;3\right\}\)
\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)
\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)
\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)
b.
ĐKXĐ: \(x\ne\left\{-1;2\right\}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)
\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)
\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)
1c.
ĐKXĐ: \(x\ne\left\{2;5\right\}\)
\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)
\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)
\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)
2a.
\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)
\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)
2b.
\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)
a: =>-3x=-12
=>x=4
b: =>3(3x+2)-3x-1=12x+10
=>9x+6-3x-1=12x+10
=>12x+10=6x+5
=>6x=-5
=>x=-5/6
c: =>x(x+1)+x(x-3)=4x
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=3(loại) hoặc x=0(nhận)
a: =>3x-9+5+10x=90
=>13x-4=90
=>13x=94
hay x=94/13
b: \(\Leftrightarrow2x-4-x-1=3x-11\)
=>3x-11=x-5
=>2x=6
hay x=3(nhận)
\(i.\dfrac{\left(2x+1\right)^2}{5}-\dfrac{\left(x-1\right)^2}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{4x^2+4x+1}{5}-\dfrac{x^2-2x+1}{3}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\dfrac{12x^2+12x+3}{15}-\dfrac{5x^2-10x+5}{15}=\dfrac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)
\(\Leftrightarrow36x=-3\)
\(\Leftrightarrow x=-\dfrac{1}{12}\)
ĐKXĐ: \(x\ne-1;x\ne2\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x-4-x-1}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Rightarrow x-5=3x-11\\ \Leftrightarrow2x=6\\ \Leftrightarrow x=3\left(TM\right)\)
Vậy tập nghiệm của Pt là S={3}
\(đkxđ:x\ne-1;x\ne2\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{1\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow2x-4-x-1=3x-11\\ \Leftrightarrow2x-4-x-1-3x+11=0\\ \Leftrightarrow-2x+6=0\\ \Leftrightarrow-2x=-6\\ \Leftrightarrow x=3\)