K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

theo định lý sin ta có a\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)

suy ra \(\dfrac{a}{sinA}=\dfrac{b+c}{sinB+sinC}=\dfrac{2a}{sinB+sinC}\)

suy ra 2sinA=sinB+sinC

16 tháng 3 2021

Lời giải:

a) Theo định lý sin và áp dụng tính chất dãy tỉ số bằng nhau ta có:

asinA=bsinB=csinC=b+csinB+sinC=2asinB+sinCasin⁡A=bsin⁡B=csin⁡C=b+csin⁡B+sin⁡C=2asin⁡B+sin⁡C

⇒1sinA=2sinB+sinC⇒1sin⁡A=2sin⁡B+sin⁡C

⇒2sinA=sinB+sinC⇒2sin⁡A=sin⁡B+sin⁡C (đpcm)

b) Theo định lý sin ta có:

asinA=bsinB=csinCasin⁡A=bsin⁡B=csin⁡C

⇒(asinA)2=bsinB.csinC=a2sinB.sinC⇒(asin⁡A)2=bsin⁡B.csin⁡C=a2sin⁡B.sin⁡C

⇒sin2A=sinB.sinC⇒sin2⁡A=sin⁡B.sin⁡C (đpcm)

30 tháng 7 2017

chết chép thiếu

30 tháng 7 2017

Nhân \(R\)Vào đi
Áp dụng : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R.\)
Done :D
 

18 tháng 1 2021

Theo định lí sin:

\(sinB=\dfrac{b}{2R};sinC=\dfrac{c}{2R};sinA=\dfrac{a}{2R}\)

Theo định lí cosin:

\(cosB=\dfrac{a^2+c^2-b^2}{2ac};cosC=\dfrac{a^2+b^2-c^2}{2ab};cosA=\dfrac{b^2+c^2-a^2}{2bc}\)

Theo giả thiết ta có:

\(\left\{{}\begin{matrix}sinB+sinC=2sinA\\cosB+cosC=2cosA\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{2R}+\dfrac{c}{2R}=2.\dfrac{a}{2R}\\\dfrac{a^2+c^2-b^2}{2ac}+\dfrac{a^2+b^2-c^2}{2ab}=2.\dfrac{b^2+c^2-a^2}{2bc}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{a^2b+bc^2-b^3}{2abc}+\dfrac{a^2c+b^2c-c^3}{2abc}=\dfrac{b^2+c^2-a^2}{bc}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{\left(b+c\right)\left(a^2+bc-b^2-c^2+bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\dfrac{2a\left(a^2-b^2-c^2+2bc\right)}{2a}=b^2+c^2-a^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+2bc=b^2+c^2-a^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\a^2-b^2-c^2+bc=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\\left(\dfrac{b+c}{2}\right)^2-b^2-c^2+bc=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3b^2+3c^2-6bc=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\3\left(b-c\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2a\\b=c\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\Delta ABC\) đều