cho số tự nhiên n, n không chia hết cho 3.CMR :n^2 /3 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài của em bị sai nhé.
Ta có thể sửa thành hai đề bài đúng:
Bài 1: Cho n là số tự nhiên, n>3, n chia hết cho 3. CMR n2 chia hết 3.
Giải:
n chia hết 3 nên n có dạng 3k (k là số tự nhiên)
Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.
Bài 2: Cho n là số tự nhiên, n>3, n không chia hết cho 3. CMR n2:3 dư 1
Giải:
Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)
Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.
Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.
Vậy n2 luôn chia 3 dư 1.
Bài giải :
n chia hết 3 nên n có dạng 3k (k là số tự nhiên)
Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.
Bài 2: Cho n là số tự nhiên, n>3, n không chia hết cho 3. CMR n2:3 dư 1
Giải:
Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)
Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.
Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.
Vậy n2 luôn chia 3 dư 1.
Đúng 2 Sai 1
1) n\(⋮\)3 vì 12 \(⋮\)3 và 9\(⋮\)3
n ko chia hết 6 vì như trên
....................
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Với n=3k+1 thì n2=(3k+1)(3k+1)=9k2+3k+3k+1
Vì 1 chia 3 dư 1 nên n2 chia 3 dư 1 (1)
Với n=3k+2 thì n2(3k+2)(3k+2)=9k2+2.3k+2.3k+4
Vì 4 chia 3 dư 1 nên n2 chia 3 dư 1 (2)
Từ (1) và (2) =>ĐPCM
Do n không chia hết cho 3 => n = 3k + 1 hoặc n = 3k + 2 \(\left(k\in N\right)\)
+ Nếu n = 3k = 1 thì n2 = (3k + 1).(3k + 1)
= (3k + 1).3k + (3k + 1)
= 9k2 + 3k + 3k + 1 chia 3 dư 1
+ Nếu n = 3k + 2 thì n2 = (3k + 2).(3k + 2)
= (3k + 2).3k + (3k + 2)
= 9k2 + 6k + 3k + 4 chia 3 dư 1
Vậy n2 luôn chia 3 dư 1 với mọi \(n\in N\); n không chia hết cho 3 (đpcm)