Cho tam giác ABC nhọn va đường cao AH .từ H kẻ HM vuông góc AB (m € AB) hn vuông góc ac ( n€ ac) .
chứng minh AM.AB =AN.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác ANH và tam giác AHC, có:
\(\widehat{ANH}=\widehat{AHC}=90^0\)
\(\widehat{NAH}=\widehat{HCA}\) ( cùng phụ với \(\widehat{A}\) )
Vậy tam giác ANH đồng dạng tam giác AHC ( g.g )
b. Xét tam giác AHB và tam giác ABC, có:
\(\widehat{BAC}=\widehat{AHB}=90^0\)
\(\widehat{B}:chung\)
Vậy tam giác AHB đồng dạng tam giác ABC ( g.g )
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{BH}{AB}\)
\(\Leftrightarrow\dfrac{12}{13}=\dfrac{BH}{15}\)
\(\Leftrightarrow13BH=180\)
\(\Leftrightarrow BH=\dfrac{180}{13}cm\)
Xét tam giác AHC và tam giác ABC, có:
\(\widehat{CAB}=\widehat{CHA}=90^0\)
\(\widehat{C}:chung\)
Vậy tam giác AHC đồng dạng tam giác ABC ( g.g )
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{CH}{AC}\)
\(\Leftrightarrow\dfrac{12}{15}=\dfrac{CH}{13}\) \(\Leftrightarrow\dfrac{4}{5}=\dfrac{CH}{13}\)
\(\Leftrightarrow5CH=52\)
\(\Leftrightarrow CH=\dfrac{52}{5}cm\)
a, \(\Delta ABC,\hat{BAC}=90^o\)
\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow AC^2=64\)
\(\Leftrightarrow AC=8\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:
\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)
Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)
Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)
\(a,\text{Áp dụng PTG:}BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \text{Áp dụng HTL:}\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\\ b,\text{Áp dụng HTL:}\left\{{}\begin{matrix}AM\cdot AB=AH^2\\AN\cdot AC=AH^2\end{matrix}\right.\\ \Rightarrow AM\cdot AB=AN\cdot AC\)
mình tóm tắt thôi nha
▲MHA đồng dạng ▲HBA(g-g)
▲ABC đồng dạng ▲HBA(g-g)
suy ra ▲MHA đồng dạng ▲ABC
▲MHA đồng đăng ▲ANM
suy ra ▲ANM đồng dạng ▲ABC
suy ra tỉ số rồi ra
b)áp dụng PY-ta-go thì
BC =25cm
ta có S▲ABC =1/2 AB.AC
mặt khác S▲ABC=1/2 AH.BC
suy ra AB.AC=AH.BC
suy ra AH=(15.20)/25=12cm
ta có ▲ANM đồng dạng ▲ABC
suy ra \(\frac{NM}{BC}=\frac{AM}{AC}\)
\(\Rightarrow\frac{AH}{BC}=\frac{AM}{AC}=\frac{12}{25}\)
\(\Rightarrow\frac{S▲ANM}{S▲ABC}=\left(\frac{12}{25}\right)^2=0,2304\)
nhớ kick cho mình nha
câu b) tính tỉ số diện tích dùm mình lun nha bạn cần gắp lắm!!!!!!!!!!
a: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
b: Giả sử AB<AC
Đặt HB=x; HC=y
Theo đề, ta có: x+y=15 và xy=36
=>x=3 và y=12
=>AB=căn 3*15=3căn 5cm; AC=căn 12*15=6*căn 5(cm)
AM=AH^2/AB=6^2/3*căn 5=12/căn 5(cm)
AN=AH^2/AC=6^2/6căn 5=6/căn 5(cm)
S AMHN=AM*AN=72/5cm2