Tìm các cặp số nguyên tố p và q biết: 6p2+5q2=74
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* p = 2 thì 4p^2 + 1 = 25 không là SNT
* p = 3 thì 6p^2 + 1 = 55 không là SNT
* p = 5 thì 4p^2 + 1=101 và 6p^2 + 1 = 151 là SNT
Vậy p = 5 thỏa điều kiện đề bài.
* P > 5 => p = 5k ±1, hoặc p = 5k ± 2.
Khi: p = 5k ± 1thì
4p^2 + 1 = 4(25k^2 ± 10k + 1) + 1= 4.25k^2 ± 4.10k + 5 > 5 và chia hết cho 5
Khi p = 5k ± 2 thì:
6k^2 + 1 =6(25k^2 ± 10k + 4) + 1 = 6.25k^2 ± 6.10k + 25 > 5 và chia hết cho 5
Vậy khi p>5 thì 4p^2+1 và 6p^2+1 không đồng thời là SNT.
=> p = 5 là SNT cần tìm.
Dễ thấy pq+7 là số lẻ \(\Rightarrow\)pq chẵn\(\Rightarrow\)p=2 hoặc q=2
th1: p=2\(\Rightarrow\)q=3,7
thử lại thấy chỉ có q=3 đúng.
th2: q=2
neu p=2 thi 5p+q khong phai so nguyen to
neu p=3 thi ca hai thoa man
neu p>3 thi p co dang 3k+1;3k+2
(lam tiep...)
c. abcabc=abc.1000+abc=abc.1001
Vì 1001 chia hết cho 7; 11 ;13 nên abcabc chia hết 7;11;13
đi rồi tôi làm tiếp
Nhận xét: 74 chia hết cho 2
=> 6p2+5q2 chia hết cho 2 mà 6p2 chia hết cho 2 => 5q2 chia hết cho 2 => q2 chia hết cho 2
Do q là số nguyên tố => q = 2
=> 6p2 = 74 - 5.4 = 54 => p2 = 9 => p =3
Vậy p = 3; q= 2