Cho tam giác ABC cân tại A. Có góc a bằng 100 độ, kẻ Bx vuông góc với AB tại B, Cy vuông góc với AC tại C. gọi M là giao điểm của Bx và Cy
a) Tính các góc của tam giác BMC
b) Chứng minh AM là đường trung trực của BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC cân tại A. Có góc a bằng 100 độ, kẻ Bx vuông góc với AB tại B, Cy vuông góc với AC tại C. gọi M là giao điểm của Bx và Cy
Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.
a) Xét tam giác ABM và ACM, ta có:
AB=AC (gt)
AM:chung
Vậy tam giác ABM=ACM( cạnh huyền-cạnh góc vuông)
b)gọi giao điểm của AM,BC là D
Xét tam giác ADB và ADC, ta có
AB=AC(gt)
GÓC BAD=CAD(tam giác ABM=ACM)
AD: chung
Vậy tam giác ADB=ADC(c.g.c)
Góc ADB=ADC(2 góc tương ứng)
mà ADB+ADC=180( kề bù)
Vậy góc ADB=ADC=90
AM vuông góc với BC
a) -△ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)
\(\Rightarrow\widehat{MBC}=\widehat{MCB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)
\(\Rightarrow\widehat{BMC}=180^0-\widehat{MBC}-\widehat{MCB}=180^0-50^0-50^0=80^0\)
b) \(AB=AC\) \(\Rightarrow\)A thuộc đg trung trực của BC. (1)
\(\widehat{MBC}=\widehat{MCB}=50^0\)\(\Rightarrow\)△BMC cân tại M\(\Rightarrow BM=CM\)\(\Rightarrow\)M thuộc đg trung trực BC (2)
-Từ (1), (2) suy ra AM là đg trung trực của BC.