K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Đáp án D

Gọi d  là đường thẳng qua M có véc tơ chỉ phương:

- Đường tròn (C1) tâm I1 (1;1) và R1= 1

  Đường tròn (C2) : tâm I2( -2;0) và R2= 3

- Nếu d cắt  (C1) tại A :

- Nếu d cắt (C2)  tại B:

- Theo giả thiết: MA= 2 MB nên MA2= 4 MB2 (*)

- Ta có :

NV
31 tháng 3 2023

Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\sqrt{5}\)

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

\(S_{IAB}=\dfrac{1}{2}IH.AB=\dfrac{1}{2}IH.2AH=IH.\sqrt{IA^2-IH^2}=IH.\sqrt{20-IH^2}\)

\(\Rightarrow IH\sqrt{20-IH^2}=8\)

\(\Rightarrow IH^4-20IH^2+64=0\Rightarrow\left[{}\begin{matrix}IH=4\\IH=2\end{matrix}\right.\)

\(\overrightarrow{IM}=\left(-1;-2\right)\Rightarrow IM=\sqrt{5}\), mà \(IH\le IM\Rightarrow IH=2\)

Gọi \(\left(a;b\right)\) là 1 vtpt của \(\Delta\) với a;b không đồng thời bằng 0

\(\Rightarrow\) Phương trình \(\Delta\)\(a\left(x-1\right)+b\left(y+3\right)=0\Leftrightarrow ax+by-a+3b=0\)

\(d\left(I;\Delta\right)=IH\Leftrightarrow\dfrac{\left|2a-b-a+3b\right|}{\sqrt{a^2+b^2}}=2\)

\(\Leftrightarrow\left|a+2b\right|=2\sqrt{a^2+b^2}\)

\(\Leftrightarrow a^2+4ab+4b^2=4a^2+4b^2\)

\(\Rightarrow3a^2-4ab=0\Rightarrow\left[{}\begin{matrix}a=0\\3a=4b\end{matrix}\right.\)

Chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(0;1\right)\\\left(a;b\right)=\left(4;3\right)\end{matrix}\right.\) \(\Rightarrow\) có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y+3=0\\4x+3y+5=0\end{matrix}\right.\)

12 tháng 11 2019

Đáp án A

Đường tròn (C) có tâm 

Do đó:

 ở trong đường tròn.

Để A là trung điểm của  

là vectơ pháp tuyến của d nên d  có phương trình: -1 (x+ 4) + 1.( y-2) =0

Hay x- y + 6= 0.