Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a) Chứng minh AD = BC.
b) Chứng minh CD vuông góc với AC
c) chứng minh BC//AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
a: Xét tứ giác ABCD có
m là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC
b: ABCD là hình bình hành
=>AB//CD
=>CD vuông góc AC
c: Xét tứ giác ABNC có
AB//NC
AC//BN
=>ABNC là hình bình hành
=>BN=AC; AB=NC
Xét ΔBAM vuông tại A và ΔNCM vuông tại C có
MA=MC
BA=CN
=>ΔBAM=ΔNCM
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD
EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD