Cho △ ABC cân tại A (<90 độ). Gọi I là trung điểm BC
a, CM △ABI=△ACI
b, Kẻ IH⊥BA (H∈AB),IK⊥AC(K∈AC). Chứng minh △IKH cân
c, kéo dài KI và AB cắt nhau tại E , kéo dài HI và AC cắt nhau tại F . Chứng minh HK//EF
Vẽ hình hộ mình luôn nhé , mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hình tự vẽ nhé )
Ta có: Tg ABC cân tại A
=>\(\hept{\begin{cases}AB=AC\left(1\right)\\\widehat{ABC}=\widehat{ACB}\left(2\right)\end{cases}}\)
Xét tg ABC có:
BD là tia phân giác của \(\widehat{ABC}\)=>\(\widehat{ABD}=\widehat{DBC}\)
CE là tia phân giác của \(\widehat{ACB}\)=>\(\widehat{ACE}=\widehat{ECB}\)
Lại có: \(\widehat{ABC}=\widehat{ACB}\)(theo (2))
=>\(\widehat{ACE}=\widehat{ABD}\)(3)
Xét tg ACE và tg ABD có:
AC=AB(theo(1))
\(\widehat{CAB}\): góc chung
\(\widehat{ACE}=\widehat{ABD}\)(theo (3))
=>Tg ABD=tg ACE(g.c.g)
=>AD=AE(2 cạnh tương ứng)
=>Tg AED cân tại A
Vậy tg AED cân tại A