Cho M =\(\frac{\sqrt{x}+1}{\sqrt{x}+3}\). Tìm x thuộc Z để M thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x+2-3\sqrt{x}-1}{x-1}=\frac{2x-3\sqrt{x}+1}{x-1}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=2-\frac{3}{\left(\sqrt{x}+1\right)}\)
A nguyên khi và chỉ khi \(3⋮\left(\sqrt{x}+1\right)\)
- TH1 : \(\left(\sqrt{x}+1\right)=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
- TH2 : \(\left(\sqrt{x}-1\right)=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Câu b : \(\frac{m\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}=\sqrt{x}-2\Leftrightarrow2m\sqrt{x}-m-x+\sqrt{x}+2=0\)
\(\Leftrightarrow x-\left(2m+1\right)\sqrt{x}+m-2=0\)phương trình có hai nghiệm phân biệt khi
\(\Delta>0\)hay \(\Delta=\left(2m+1\right)^2-\left(m-2\right)4=m^2+9>0\forall m\)
Câu C: để \(A=2-\frac{3}{\sqrt{x}+1}\ge2-\frac{3}{0+1}=-1\)\(\Rightarrow A_{Min}=-1\)khi \(x=0\)