Tam giác ABC vuông tại A Đường cao AH Câu a) c/m tam giác ABC đồng dạng với ABH b) AB=6 AC=8 Tính BC,AH c) lCm AH² = BH.HC d) vẽ phân giác BD ( D thuộc A). Gọi I là giao điểm của AH và BD C/M AB.BI=BD.HB và tam giác AID cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạg với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc ADE=90 độ-góc ABD
góc AED=góc BEH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADE=góc AED
=>AD=AE
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc DBC
góc ADE=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AED=góc ADE
=>AD=AE
a) Xét \(\Delta BAH\) và \(\Delta BCA\)có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BAH~\Delta BCA\) (g.g)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
\(\Delta ABC\)có AK là phân giác
\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)
suy ra: \(KB=\frac{30}{7}\) \(KC=\frac{40}{7}\)
c) Xét \(\Delta ABD\)và \(\Delta HBI\)có:
\(\widehat{ABD}=\widehat{HBI}\) (gt)
\(\widehat{BAD}=\widehat{BHI}=90^0\)
suy ra: \(\Delta ABD~\Delta HBI\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow\)\(AB.BI=BD.HB\)
d) \(S_{ABC}=\frac{1}{2}.AB.AC=24\)
\(\Delta ABH~\Delta CBA\) (câu a)
\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)
\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)
â) chứng minh AB2 = BH . BC
Xét : \(\Delta ABHva\Delta ABC,co\):
\(\widehat{B}\) là góc chung
\(\widehat{A}=\widehat{H}=90^o\)
Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)
=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng )
=> AB . AB = BH . BC
=> AB2 = BH . BC
b)
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AD/DC=BA/BC=6/10=3/5
b: Xét ΔHBA vuông tạiH và ΔABC vuôg tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
màgóc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc ABH chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=8/8=1
=>AD=3cm; CD=5cm
c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có
góc HBI=góc ABD
=>ΔBHI đồng dạng với ΔBAD
=>BH/BA=BI/BD
=>BH*BD=BA*BI
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc EBH
góc ADE=90 độ-góc ABD
góc EBH=góc ABD
=>góc AED=góc ADE
=>AE=AD
a) Xét ΔHCA vuông tại H và ΔACB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔHCA\(\sim\)ΔACB(g-g)
a, Xét ΔABC và ΔHBA có :
\(\widehat{A}=\widehat{AHB}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)
b, Xét ΔABC vuông tại A, theo định lý Pi-ta-go ta có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có : \(\Delta ABC\sim\Delta HBA\left(cmt\right)\)
\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\)
hay \(\dfrac{8}{AH}=\dfrac{10}{6}\)
\(\Rightarrow AH=\dfrac{8.6}{10}=4,8\left(cm\right)\)
c, Xét ΔAHB và ΔCHA có :
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{BAH}=\widehat{C}\left(phụ\cdot với\cdot\widehat{B}\right)\)
\(\Rightarrow\Delta AHB\sim\Delta CHA\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{HC}=\dfrac{BH}{AH}\)
\(\Rightarrow AH^2=HC.BH\)
d, Xét ΔABD và ΔHBI có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{ABD}=\widehat{HBI}\left(phân\cdot giác\cdot BD\right)\)
\(\Rightarrow\Delta ABD\sim\Delta HBI\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BD}{BI}\)
\(\Rightarrow AB.BI=BD.HB\left(đpcm\right)\)