chứng tỏ rằng mọi phân số có dạng n+2018/n+2019 [ n thuộc N ] đều là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(2n+2018,2n+2019\right)=d\)
\(\Leftrightarrow\hept{\begin{cases}\left(2n+2019\right)⋮d\\\left(2n+2018\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left[\left(2n+2019\right)-\left(2n+2018\right)\right]⋮d\)
\(\Leftrightarrow\left[2n+2019-2n-2018\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\left(2n+2018,2n+2019\right)=1\)hay \(\frac{2n+2018}{2n+2019}\) là phân số tối giản
Đặt \(n+1;2n+3=d\)
\(n+1⋮d\Rightarrow2n+2\)(1)
\(2n+3⋮d\)(2)
Lấy 2 - 1 ta có :
\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.
chứng tỏ rằng mọi phân số có dạng \(\frac{n}{n+1}\)(vơi n thuộc N, n khác 0) đều là phân số tối giản
Gọi ƯCLN của n và n + 1 là d (d \(\in\)N và d \(\ge\)1).
Khi đó n \(⋮\)d và n + 1\(⋮\)d. Suy ra n + 1 - n \(⋮\)d => 1 \(⋮\)d
Vậy d = 1
Như vậy phân số \(\frac{n}{n+1}\)là phân số tôi giản.
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản
2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d
suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)
={2;-2;1;-1}
vì 2n+1 là số lẻ nên d={1;-1}
suy ra 2n+1phần 4n+6 là phân số tối giản
Gọi \(ƯCLN\left(n+1;2n+3\right)\)là d.Ta có:
\(n+1⋮d\Rightarrow2n+2⋮d\)
\(2n+3⋮d\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy p/s tối giản
Gọi ƯCLN(n+2018;n+2019) = a
Có n+2018 chia hết cho a
và n+2019 chia hết cho a
=> (n+2019)-(n+2018) chia hết cho a
=> 1 chia hết cho a
=> a = 1
ƯCLN(n+2018;n+2019) = 1
=> \(\dfrac{n+2018}{n+2019}\) là phân số tối giản
Mình đưa ví dụ nhé:
n= 1
=> n+2018/n2019 = 2019/2020
Bạn thấy đó 2018/ 2019 là phân số tối giản nếu cùng cộng cả tử và mẫu với bao nhiêu đi nữa thì nó cung sẽ luôn tối giản.
ví dụ như; n+2/n+3
n=6
=> 8/9