(1-1/2^2)x(1-1/3^2)x(1-1/4^2) ...(1-1/200^2)>1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 1 x 2 + 1 x 2 x 3 + 1 x 2 x 3 x 4 + … + 1 x 2 x 3 x … x 199 x 200. Tìm chữ số tận cùng của S
Ta thấy: 1*2 tận cùng là 2
1*2*3 tận cùng là 6
1*2*3*4 tận cùng là 4
Từ 1*2*3*4*5 đến 1*2*3*...*199*200 đều có thừa số (2*5)=10 nên đều có tận cùng là 0
==> S = 1 + 2 + 6 + ...4 + ...0 + ... + ...0 = ...3 hay S tận cùng bằng 3
Vậy S có tận cùng bằng 3.
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-199}{200}=-\dfrac{1}{200}\)
\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{200^2}-1\right)\)
A là tích của 199 số âm(đặt biểu thức trên là A)
\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{200^2}\right)\)
\(=\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{39999}{200^2}\)
\(=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot...\cdot\frac{199\cdot201}{200^2}\)
Để dễ rút gọn,ta viết tử dưới dạng tích các số tự nhiên liên tiếp .
\(-A=\frac{1\cdot2\cdot3\cdot...\cdot198\cdot199}{2\cdot3\cdot4\cdot...\cdot199\cdot200}\cdot\frac{3\cdot4\cdot5\cdot...\cdot201}{2\cdot3\cdot4\cdot...\cdot199\cdot200}=\frac{1}{200}\cdot\frac{201}{2}=\frac{201}{400}>\frac{1}{2}\)
=> \(A< -\frac{1}{2}\)