Chứng tỏ rằng : \(\frac{1}{101}\) + \(\frac{1}{102}\) +....+\(\frac{1}{299}\)+\(\frac{1}{300}\) > \(\frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Vì : 1/101 > 1/300 ; 1/102 > 1/300 .... ; 1/299 >1/300 ; Do 1/101.....1/300 có 200 số
=>1/101+1/102+....+1/299+1/300 > 1/300 x 200
> 2/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)( có 200 số )
Ta có
\(\frac{1}{101}>\frac{1}{300}\); \(\frac{1}{102}>\frac{1}{300}\); ...;\(\frac{1}{299}>\frac{1}{300}\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}+\frac{1}{300}\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{1}{300}.200\)
=> \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)> \(\frac{2}{3}\)( dpcm )
Ta có\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200.\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\Rightarrowđpcm\)
Ta có
\(\frac{1}{101}>\frac{2}{3}\)
\(\frac{1}{102}>\frac{2}{3}\)
.
.
.
\(\frac{1}{300}>\frac{2}{3}\)
Vậy \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
ta có
\(\frac{1}{300}< \frac{1}{101}\); \(\frac{1}{300}< \frac{1}{102}\); \(\frac{1}{300}< \frac{1}{102}\)....\(\frac{1}{300}< \frac{1}{299}\)
\(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}< \frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)
\(\frac{200}{300}< \frac{1}{101}+\frac{1}{102}+...+\text{}\text{}\)
rút gọn là xong
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>200.\frac{1}{300}\)
\(>\frac{2}{3}\)
là sao ??