K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017
Lớp 9 chứ lớp 8 gì
15 tháng 2 2019

Trả lời...........

là lớp 9 mà

8 tháng 12 2021

Tham Khảo e nhá chj ngu ném ko bik làm☹

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-m-la-trung-diem-bc-chung-minh-ab2-ac2-2am2-bc22.249563555147

10 tháng 12 2021

Kẻ AH vuông góc BC.

Xét tam giác AHM vuông tại H (^AHM = 900) có:

AM2 = AH2 + HM2 (định lý Pytago).

Xét tam giác AHB vuông tại H (^AHB = 900) có:

AB2 = AH2 + BH2 (định lý Pytago).

Xét tam giác AHC vuông tại H (^AHC = 900) có:

AC2 = AH2 + CH2 (định lý Pytago).

Ta có: BH = BM - HM.

          CH = CM + HM. 

Vì M là trung điểm của BC (gt) => BM = CM; BM = \(\dfrac{BC}{2}\) => BM2 = \(\dfrac{BC^2}{4}\).

Ta có: AB2 + AC2 = AH2 + BH2 + AH2 + CH2.

          AB2 + AC2 = AH2 + AH+ BH+ CH2.

                            = 2AH2 + (BM - HM)2 + (CM + HM)2.

                            = 2AH2 + BM2 - 2BM.HM + HM2 + CM2 + 2CM.HM + HM2.

                            = 2AH2 + BM2 - 2BM.HM + HM2 + BM2 + 2BM.HM + HM2.

                            = 2AH+ 2HM2 + 2BM2.

                            = 2(AH2 + HM2) + 2\(\dfrac{BC^2}{4}\).

          AB2 + AC2 = 2AM2 + \(\dfrac{BC^2}{2}\) (đpcm). 

21 tháng 11 2018

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình

=>MN//BC và MN=BC/2

14 tháng 12 2021

Áp dụng HTL: \(AB^2=BH.BC;AC^2=CH.BC\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)

1 tháng 6 2018

Trên tia đối của tia MA lấy điểm D sao cho MA = MD.

Xét ΔAMB và ΔDMC, ta có:

MA = MD (theo cách vẽ)

∠(AMB) = ∠(DMC) (đối đỉnh)

MB = MC (gt)

Suy ra: ΔAMB = ΔDMC (c.g.c)

Suy ra: AB = CD (hai cạnh tương ứng)

Trong ΔACD, ta có: AD < AC + CD

(bất đẳng thức tam giác)

Suy ra: AD < AC + AB

Mà AD = AM + MD = 2AM

Suy ra: 2AM < AC + AB hay Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Câu 20: Tam giác ABC vuông tại B suy ra:   A.  AC2  = AB2 + BC2 ­                                   B.  AC2  = AB2 - BC2   C.  BC2  = AB2 + AC2                                    D.  AB2  = BC2 + AC2Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?   A.  Tại  B                                                      B.  Tại C   C.  Tại A                                                       D.  Không phải là tam giác vuôngCâu 22: Cho ABC có  = 900 ;...
Đọc tiếp

Câu 20: Tam giác ABC vuông tại B suy ra:

   A.  AC2  = AB+ BC2 ­                                   B.  AC2  = AB- BC2

   C.  BC2  = AB+ AC2                                    D.  AB2  = BC+ AC2

Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?

   A.  Tại  B                                                      B.  Tại C

   C.  Tại A                                                       D.  Không phải là tam giác vuông

Câu 22: Cho ABC có  = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:

   A.  6,5 cm                    B.  5,5 cm                     C.  6 cm                       D.   6,2 cm

Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:

A.  3cm, 4dm, 5cm.         B.  5cm, 14cm, 12cm. 

C.  5cm, 5cm, 8cm.         D.  9cm, 15cm, 12cm.

Câu 24: Cho ABC có  AB = AC và  = 600, khi đó tam giác ABC là:

   A.  Tam giác vuông                                       B.   Tam giác cân

   C.  Tam giác đều                                           D.  Tam giác vuông cân

Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:

A.  ∠A ≤ 900                                 B. ∠A > 900                            C. ∠A < 900                       D. ∠A = 900

Ai giúp mình với ạ!

1
13 tháng 3 2022

Câu 20: Tam giác ABC vuông tại B suy ra:

   A.  AC2  = AB+ BC2 ­                                   B.  AC2  = AB- BC2

   C.  BC2  = AB+ AC2                                    D.  AB2  = BC+ AC2

Câu 21: Tam giác ABC có BC = 5cm; AC = 12cm; AB = 13cm. Tam giác ABC vuông tại đâu?

   A.  Tại  B                                                      B.  Tại C

   C.  Tại A                                                       D.  Không phải là tam giác vuông

Câu 22: Cho ABC có  = 900 ; AB = 4,5 cm ; BC = 7,5 cm. Độ dài cạnh AC là:

   A.  6,5 cm                    B.  5,5 cm                     C.  6 cm                       D.   6,2 cm

Câu 23: Tam giác nào là tam giác vuông trong các tam giác có độ dài các cạnh là:

A.  3cm, 4dm, 5cm.         B.  5cm, 14cm, 12cm. 

C.  5cm, 5cm, 8cm.         D.  9cm, 15cm, 12cm.

Câu 24: Cho ABC có  AB = AC và  = 600, khi đó tam giác ABC là:

   A.  Tam giác vuông                                       B.   Tam giác cân

   C.  Tam giác đều                                           D.  Tam giác vuông cân

Câu 25: Nếu A là góc ở đáy của một tam giác cân thì:

A.  ∠A ≤ 900                                 B. ∠A > 900                            C. ∠A < 90                      D. ∠A = 900