K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2015

a)\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{195}\)

Đặt \(C=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{66}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4}+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{6}+\frac{1}{6}\right)+...+\left(-\frac{1}{11}+\frac{1}{11}\right)-\frac{1}{12}\)\(\Rightarrow\frac{1}{2}C=\frac{1}{4}+0+0+...+0-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{4}-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{3}{12}-\frac{1}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{2}{12}\)

\(\Rightarrow\frac{1}{2}C=\frac{1}{6}\)

\(\Rightarrow C=\frac{1}{6}:\frac{1}{2}\)

\(\Rightarrow C=\frac{1}{6}\cdot2\)

\(\Rightarrow C=\frac{2}{6}=\frac{1}{3}\)

 

25 tháng 6 2023

a=78/35

b=22/12

c=1/1

d=40202090/4040090

e=1,24025667172...

f=871,82

ko biết đúng ko [0_0'] hihi

4 tháng 2 2018

a)    \(\frac{3}{16}+\frac{4}{15}+\frac{5}{16}+\frac{1}{15}\)

\(=\left(\frac{3}{16}+\frac{5}{16}\right)+\left(\frac{4}{15}+\frac{1}{15}\right)\)

\(=\frac{1}{2}+\frac{1}{3}\)

\(=\frac{5}{6}\)

b)   \(\frac{6}{7}\times\frac{8}{15}\times\frac{7}{6}\times\frac{15}{16}\)

\(=\left(\frac{6}{7}\times\frac{7}{6}\right)\times\left(\frac{8}{15}\times\frac{15}{16}\right)\)

\(=1\times\frac{1}{2}=\frac{1}{2}\)

c)   \(\frac{19}{20}\times\frac{13}{21}+\frac{9}{20}\times\frac{8}{21}\)

\(=\frac{19\times13}{20\times21}+\frac{9\times8}{20\times21}\)

\(=\frac{247}{420}+\frac{72}{420}\)

\(=\frac{319}{420}\)

4 tháng 2 2018

còn phần D đâu bn 

24 tháng 3 2019

a) \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\frac{14}{15}\)

\(=\frac{14}{30}=\frac{7}{15}\)

24 tháng 3 2019

a)

\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)

\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)

\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)

\(=2\left(1-\frac{1}{15}\right)\)

\(=2.\frac{14}{15}\)

\(=\frac{28}{15}\)

b)

\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)

\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+\frac{2}{9.10}+\frac{2}{10.11}+\frac{2}{11.12}\)

                                                                                         \(...\)

8 tháng 8 2020

Bài làm:

Ta có: \(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{66}\)

\(=\frac{1}{1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{11.6}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.1.3}+\frac{1}{2.3.2}+...+\frac{1}{2.11.6}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{12}\right)\)

\(=\frac{1}{2}.\frac{11}{12}\)

\(=\frac{11}{24}\)

8 tháng 8 2020

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)

\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)

\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{10\times11}+\frac{1}{11\times12}\right)\)

\(=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)

\(=2\times\left(1-\frac{1}{12}\right)\)

\(=2\times\frac{11}{12}\)

\(=\frac{11}{6}\)

11 tháng 8 2019

a) A = 9/8.11 + 9/11.14 + 9/14.17 + ... + 9/73.75

A = 3.(1/8 - 1/11 + 1/11 - 1/14 + 1/14 - 1/17 + ... + 1/73 - 1/75)

A = 3.(1/8 - 1/75)

A = 3.67/600

A = 67/200

Các bài sau làm tương tự, riêng câu D thì phân tích ra 

Mình chỉ làm hộ bạn câu a) thôi nhé vì đề sàn sàn giống nhau :

a) \(A=\frac{9}{8×11}+\frac{9}{11×14}+\frac{9}{14×17}+...+\frac{9}{73×75}\)

\(A=\frac{9}{8}-\frac{9}{11}+\frac{9}{11}-\frac{9}{14}+\frac{9}{14}-\frac{9}{17}+...+\frac{9}{73}-\frac{9}{75}\)

\(A=\frac{9}{8}-\frac{9}{75}\)

\(A=\frac{675}{600}-\frac{72}{600}\)

\(A=\frac{673}{600}\)

Vậy,...

Cbht

12 tháng 8 2019

gợi ý nè

1/a.b=1/a-1/b

12 tháng 8 2019

b. B= 1/25×27+1/27×29+1/29×31+...+1/73×75

2B= 2.(1/25×27+1/27×29+1/29×31+...+1/73×75)

2B= 2/25×27+2/27×29+2/29×31+...+2/73×75

2B= 1/25-1/27+1/27-1/29+...+1/73-1/75

2B= 1/25-1/75

B=(1/25-1/75):2

Từng đó đã nha để mik nghĩ tiếp

T.i.c.k đc ko PLEASE!!!

4 tháng 8 2019

\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)

\(B=\frac{2}{3×5}+\frac{2}{5×7}+\frac{2}{7×9}+...+\frac{2}{19×21}\)

\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{19}-\frac{1}{21}\)

\(B=\frac{1}{3}-\frac{1}{21}\)

\(B=\frac{2}{7}\)

4 tháng 8 2019

A=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+...+\(\frac{1}{66}\) 

A=\(\frac{1}{1\cdot3}\) +\(\frac{1}{2\cdot3}\) +\(\frac{1}{2\cdot5}\)+...+\(\frac{1}{6\cdot11}\)

A=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{5}+...+\frac{1}{6}-\frac{1}{11}\)

A=\(\frac{1}{1}-\frac{1}{11}\)

=>A=\(\frac{10}{11}\)

B=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\) 

2B=\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{19\cdot21}\)

2B=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

2B=\(\frac{1}{3}-\frac{1}{21}\)

2B=\(\frac{2}{7}\)

B=\(\frac{2}{7}:2\)

=>B=\(\frac{1}{7}\)