cho A \(\frac{n+1}{n-3}\)
tìm n để A là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gọi D là UCLN(3n-2;4n-3)
\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D
\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D
\(\Rightarrow\)(12n-9-12n+8) chia hết cho D
\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}
hay UCLN(3n-2;4n-3) \(\in\){1;-1}
chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản
b) +) để A là phân số thì n-3\(\ne\)0
=>n\(\ne\)3
+) ta có \(\frac{n+1}{n-3}\)= \(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)
để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên
=> 4 chia hết n-3
=> n-3 \(\in\)U(4)
mà U(4) = {-1;-2;-4;1;2;4}
ta có bảng
n-3 | -1 | -2 | -4 | 1 | 2 | 4 |
n | 2 | 1 | -1 | 4 | 5 | 7 |
vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
Ta có : n + 1 chai hết cho n - 3
<=> n - 3 + 4 chia hết cho n - 3
=> 4 chia hết cho n - 3
=> n - 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}
Ta có bảng :
n - 3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
a) để n là phân số thì n-3 khác 0 nên n khác 3
vậy n là mọi số nguyên khác 3
b) n lẻ
c) để A lớn nhất thì n-3 sẽ nhỏ nhất nên n-3=1 vậy n=4
k nha bạn
k cho mình mình k lại
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
a) n - 5 / n + 1
=> n + 1 - 6 / n + 1
=> 6 / n + 1
=> n + 1 thuộc Ư(6) = {1;2;3;6;-1;-2;-3;-6}
b) A tối giản => bỏ số âm
A cô thể thuộc {1;2;3;6}
Vì 1 - 5 là số âm => bỏ 1
Vì 2 - 5 âm => bỏ 2
Vì 3 - 5 âm => bỏ 5
Vậy để A tối giản => n = 6
100 - 100 + 666 - 555 + 111 - 111 + 111 - 222
= 0 + 666 - 555 + 111 - 111 + 111 - 222
= 666 - 555 + 111 - 111 + 111 - 222
= 111 + 111 - 111 + 111 - 222
= 222 - 111 + 111 - 222
= 111 + 111 - 222
= 222 - 222
= 0
Chuc ban hoc tot
cho phân số $A=\frac{n+1}{n-3}$
a) Tìm n để A có giá trị nguyên
b) Tìm n để A là phân số tối giản
Để A là phân số tối giản thì n + 1 phải không chia hết cho n - 3
Mà n + 1 = n - 3 + 4
vì n - 3 chia hết cho n-3 rồi nên 4 phải không chia hết cho n - 3
\(\Rightarrow n-3\in\left\{3\right\}\)
=> n = 6
\(n-3\in\left\{3\right\}\)là sao