giải thích chi tiết cho mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4,=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{5-2\sqrt{6}-9}=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\\ =\dfrac{3\left(3-\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{6}}=\dfrac{\left(9-3\sqrt{2}-3\sqrt{3}\right)\left(\sqrt{6}-2\right)}{2}\\ =\dfrac{9\sqrt{6}-18-6\sqrt{3}+6\sqrt{2}-9\sqrt{2}+6\sqrt{3}}{2}\\ =\dfrac{9\sqrt{6}-3\sqrt{2}-18}{2}\)
\(7,=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-2-\sqrt{3}\\ =\sqrt{3}+2+\sqrt{2}+1-2-\sqrt{3}=1+\sqrt{2}\)
\(10,\dfrac{1}{\sqrt{a}+\sqrt{a+2}}=\dfrac{\sqrt{a}-\sqrt{a+2}}{a-a-2}=\dfrac{\sqrt{a-2}-\sqrt{a}}{2}\)
Do đó \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{47}+\sqrt{49}}\)
\(=\dfrac{\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{49}-\sqrt{47}}{2}=\dfrac{-1+\sqrt{49}}{2}=\dfrac{7-1}{2}=3\)
10, \(\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+...+\dfrac{1}{\sqrt{17}+\sqrt{19}}=\dfrac{\sqrt{1}-\sqrt{3}}{\left(\sqrt{1}+\sqrt{3}\right)\left(\sqrt{1}-\sqrt{3}\right)}+\dfrac{\sqrt{3}-\sqrt{5}}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}+...+\dfrac{\sqrt{17}-\sqrt{19}}{\left(\sqrt{17}+\sqrt{19}\right)\left(\sqrt{17}-\sqrt{19}\right)}=\dfrac{1-\sqrt{3}+\sqrt{3}-\sqrt{5}+...+\sqrt{17}-\sqrt{19}}{-2}=-\dfrac{1-\sqrt{19}}{2}\)
Nếu một số vừa chia hết cho 5 vừa chia hết cho 9 thì chia hết cho 45
=> 24x68y phải chia hết cho cả 5 và 9
=> y = 0; 5
Xét y = 0 thì 24x680 chia hết cho 9
=> 2+4+x+6+8+0 chia hết cho 9
=> x = 7
Xét y = 5 thì 24x685 chia hết cho 9
=> 2+4+x+6+8+5 chia hết cho 9
=> x = 2
Vậy (x,y) = (7,0 ; 2,5)
1B 2A(nhấn âm 1,còn lại nhấn âm 2) 3B 4A(Although->Despite) 5A 6C 7C 8B 9B 10D 11A 12C
13.In spite of the cold weather, our teacher wasn't wearing the coat
14.These machine has been sold by my brother for 2 days
29.
Do \(M\in\Delta\) nên tọa độ có dạng: \(M\left(m;2m+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(m-4;2m+4\right)\\\overrightarrow{BM}=\left(m-5;2m-4\right)\\\overrightarrow{CM}=\left(m-1;2m+2\right)\end{matrix}\right.\)
\(\Rightarrow AM^2+BM^2+CM^2\)
\(=\left(m-4\right)^2+\left(2m+4\right)^2+\left(m-5\right)^2+\left(2m-4\right)^2+\left(m-1\right)^2+\left(2m+2\right)^2\)
\(=15m^2-12m+78\)
\(=15\left(m-\dfrac{2}{5}\right)^2+\dfrac{378}{5}\ge\dfrac{378}{5}\)
Dấu "=" xảy ra khi \(m=\dfrac{2}{5}\Rightarrow M\left(\dfrac{2}{5};\dfrac{9}{5}\right)\)
30.
Đặt \(f\left(x\right)=x^2-6x-7\)
Đồ thị hàm \(y=\left|f\left(x\right)\right|=\left|x^2-6x-7\right|\) được tạo ra bằng cách lấy đối xứng phần bên dưới trục Ox của đồ thị \(f\left(x\right)\) lên như hình vẽ:
Từ đồ thị ta thấy pt có 4 nghiệm pb khi và chỉ khi: \(0< m< 16\)
\(\Rightarrow\) Có 15 giá trị nguyên của m