K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2022

undefined

tham khảo

28 tháng 3 2022

undefined

hình

11 tháng 6 2019

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j

18 tháng 10 2021

b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

31 tháng 7 2018

c) Do DH vuông góc với AB nên DH là khoảng cách từ D đến AB.

Tương tự DK là khoảng cách từ D đến AC.

Suy ra DH = DK. Suy ra điểm D cách đều AB và AC.

a: Xét ΔIAB và ΔIDC có

IA=ID

AB=DC

IB=IC

=>ΔIAB=ΔIDC

=>góc IAB=góc IDC=góc IAD

=>AI là phân giác của góc BAC
b: Xét ΔAEI vuông tại E và ΔAHI vuông tại H có

AI chung

góc EAI=góc HAI

=>ΔAEI=ΔAHI

=>AE=AH; IE=IH

=>AI là trung trực của EH

23 tháng 1 2022

a) Xét ▲ABD và ▲ACD có:

\(\widehat{BAD}=\widehat{CAD}\) (AD là đường phân giác của \(\widehat{BAC}\))

AB=AC (▲ABC cân tại A).

AD là cạnh chung.

=>▲ABD = ▲ACD (c-g-c)

=> BD=CD (2 cạnh tương ứng) hay D là trung điểm BC. (1)

\(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng)

Mà \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)

=>\(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD⊥BC tại D (2)

- Từ (1) và (2) suy ra: AD là đường trung trực của BC.

b) Xét ▲AIF và ▲AIE có:

\(\widehat{FAI}=\stackrel\frown{EAI}\) (AI là đường phân giác của \(\widehat{FAE}\) )

AF=AE (gt)

AI là cạnh chung.

=>▲AIF = ▲AIE  (c-g-c)

=>\(\widehat{AFI}=\widehat{AEI}\) (2 góc tương ứng)

\(\widehat{AEI}=90^0\)(BE⊥AC tại E)

=>\(\widehat{AFI}=90^0\) hay IF⊥AB tại F.

c) Xét ▲ABC có:

AD là đường cao (AD⊥BC tại I)

BE là đường cao (BE⊥AC tại E)

AD cắt BE tại I (gt)

=> I là trực tâm của ▲ABC.

=>CI⊥AB mà IF⊥AB (cmt)

=>CI trùng với IF hay C,I,F thẳng hàng.

23 tháng 1 2022

Thanksvui

a: Xet ΔADB và ΔADE có

AB=AE

góc BAD=góc EAD

AD chung

=>ΔABD=ΔAED

b: Xét ΔAHD vuông tại HvàΔAKD vuông tại K co

AD chung

góc HAD=góc KAD

=>ΔAHD=ΔAKD

=>DH=DK

=>D cách đều AB,AC