Cho Δ ABC đường trung tuyến AM sao cho góc BAM=BCA.chứng minh rằng
a,Δ MBA đồng dạng ΔABC
b,BC2=2AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMBA và ΔABC có
\(\widehat{B}\) chung
\(\widehat{MAB}=\widehat{ACB}\)
Do đó: ΔMBA\(\sim\)ΔABC
b: Ta có: ΔMBA\(\sim\)ΔABC
nên MB/AB=BA/BC
hay \(AB^2=MB\cdot BC\)
a) Xét ΔMBA và ΔABC có:
\(\widehat{B}\):góc chung
\(\widehat{BAM}=\widehat{BCA}\left(gt\right)\)
=> ΔMBA~ΔABC(g.g)
b) xem lại đề
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)
nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)
Xét ΔAIK và ΔACB có
\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)
\(\widehat{IAK}\) chung
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)