Chứng minh rằng trong 9 nguyên bất kì luôn tìm được 5 số có tổng chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để làm đc bài này bạn cần áp dụng phương pháp đồng dư,chắc chắn sẽ ra,
Bài này mình nghĩ có nhiều cách giải.
Cách 1: Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
Cách 2: Một số khi chia cho 3 sẽ nhận 1 trong 3 số dư. Mà có 5 số => Có ít nhất 2 số cùng số dư khi chia cho 3.
+Nếu có 3 số cùng dư trở lên thì lấy 3 trong số các số đó cộng lại sẽ được tổng chia hết cho 3.
+Nếu chỉ có 2 số có cùng số dư thì chia 5 số thành 3 cặp: (a1,a2);(a3,a4);a5. Trong đó các số cùng cặp sẽ có cùng số dư khi chia cho 3.Các cặp này phải lần lượt nhận các số dư khác nhau khi chia cho 3. Chọn một số bất kì từ mỗi cặp và cộng lại sẽ được tổng chia hết cho 3 (do tổng 3 số dư chia hết cho 3)
Ta xét 51 nhóm sau:
Nhóm 1: Các số tự nhiên chia hết cho 100
Nhóm 2: Các số tự nhiên chia 100 dư 1 và 99
Nhóm 3: Các số tự nhiên chia 100 dư 2 và 98
...
Nhóm 51: Các số tự chia 100 dư 50
Nếu có 2 số cùng chia hết cho 100 thì bài toán đã chứng minh
Nếu không có 2 số chia hết 100 thì ta làm như sau:
Vì có 52 số mà có 51 nhóm nên theo nguyên lí Đi rich lê phải có 1 nhóm có tổng hoặc hiệu chia hết cho 100
=> Đpcm
đây nha bạn chúc bạn học tốt
Bạn tham khảo ở đây nhé
Bài toán 120 - Học toán với OnlineMath
Ta có trong 5 số bất kỳ luôn tồn tại 3 số có tổng chia hết cho 3 .
Như vậy trong 9 số thì tồn tại 5 cặp , mỗi cặp 3 số có tổng chia hết cho 3
Mỗi cặp đồng dư 0,3,6 mod 5
Nếu 3 cặp cùng 1 lớp đồng dư ⇒ dpcm
Mà có 5 cặp ⇒ Có đầy đủ 3 lớp đồng dư ⇒ Tồn tại 5 số có tổng chia hết cho 5