câu 4: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BD vuông góc với đường thẳng d tại D (D in d) , kẻ CE vuông góc với đường thẳng d tại E(E in d) . Biết rằng độ dà cạnh AB = 5cm EC = 4cm . b) Chứng minh rằng AD = CE . c) Chứng minh rằng tổng BD²+CE²có giá trị ko đổi a) Tính độ dài cạnh AE=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có Â 1 + Â 2 + Â 3 = 180 độ
Mà Â 2 = 90 độ
Suy ra  1 +  2 = 90 độ
Tam giác vuông ABD có :
Â1 + C^ = 90 độ
Mà Â 1 + Â 3 = 90 độ
Suy ra  3 = góc ACE
Xét tam giác BDA tam giác AEC có :
BA = CA ( GIẢ THIẾT )
Góc DAB = Góc ECA ( CHỨNG MINH TRÊN )
Suy ra tam giác BDA = tam giác AEC(ạnh huyền -góc nhọn )
Suy ra AE = BD (2 cạnh tương ứng )
AD = CE ( 2 cạnh tương ứng )
ta có DE = AE + AD
Suy ra DE = BD + CE
Mà
2. Cho tam giác ABC vuông cân tại A.. Qua A vẽ đường thẳng d ở ngoài tam giác ABC . Vẽ BD vuông góc với d taị D. CE vuông góc với d tại E. M là trung điểm CB. Chứng minh rằng:
a) BD + CE = DE
b) Tam giác MDE là tam giác vuông cân
Δ BHA : góc BHA = 90* (gt)
=> góc HBA + góc HAB = 90* (định lý)
Δ AKC : góc AKC = 90* (gt)
=> góc CAK + góc KCA = 90* (định lý)
Ta có góc : HAB + BAC + CAK = 180*
=> góc : HAB + 90* + CAK = 180*
=> góc : HAB + CAK = 90
Ta có góc : CAK + HAB = 90* (cmt)
mà góc : CAK + KCA = 90* (cmt)
=> góc : CAK + HAB = CAK + KCA (t/c b.cầu)
=> góc : HAB = KCA (chuyển vế đổi dấu)
Xét Δ HBA và Δ KAC có :
BA = CA (gt)
góc BAH = góc KCA (cmt)
góc H = góc K = 90*
=> Δ HBA = Δ KAC ( cạnh huyền - góc nhọn )
=> AH = CK (c.t.ứng) (dpcm A)
=> BH = AK (c.t.ứng)
có HK = AH + AK
mà AH = CK (cmt) , BH = AK (cmt)
=> HK = BH + CK (t/c b.cầu) (dpcm B)