K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Đặt \(\frac{x-2}{x-1}=a;\frac{x+2}{x+1}=b\) ta có: \(pt\Leftrightarrow10a^2+b^2-11ab=0\)

\(\Leftrightarrow10a^2-10ab-ab+b^2=0\Leftrightarrow\left(a-b\right)\left(10a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\10a=b\end{cases}}\)

TH1: \(\frac{x-2}{x-1}=\frac{x+2}{x+1}\)

TH2: \(10.\frac{x-2}{x-1}=\frac{x+2}{x+1}\)

Từ đó em có thể làm tiếp nhé.

8 tháng 8 2016

jup mk vs cac ty oi

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

29 tháng 7 2019

\(\text{a) }10\left(\frac{x-2}{x+1}\right)^2+\left(\frac{x+2}{x-1}\right)^2-11\frac{x^2-4}{x^2-1}=0\\ DKXD:x\ne-1;x\ne1\\ \Leftrightarrow10\left(\frac{x-2}{x+1}\right)^2+\left(\frac{x+2}{x-1}\right)^2-11\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-1\right)}=0\)

Đặt \(\frac{x-2}{x+1}=a;\frac{x+2}{x-1}=b\)

\(Pt\Leftrightarrow10a^2+b^2-11ab=0\\ \Leftrightarrow10a^2-10ab-ab+b^2=0\\ \Leftrightarrow10a\left(a-b\right)-b\left(a-b\right)=0\\ \Leftrightarrow\left(10a-b\right)\left(a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}10a-b=0\\a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10a=b\\a=b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{10\left(x-2\right)}{x+1}=\frac{x+2}{x-1}\left(1\right)\\\frac{x-2}{x+1}=\frac{x+2}{x-1}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow10\left(x-2\right)\left(x-1\right)=\left(x+1\right)\left(x+2\right)\\ \Leftrightarrow10\left(x^2-3x+2\right)=x^2+3x+2\\ \Leftrightarrow9x^2-33x+18=0\\ \Leftrightarrow9x^2-27x-6x+18=0\\ \Leftrightarrow9x\left(x-3\right)-6\left(x-3\right)=0\\ \Leftrightarrow\left(9x-6\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\9x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{2}{3}\end{matrix}\right.\left(Tm\right)\)

\(\left(2\right)\Leftrightarrow\left(x-2\right)\left(x-1\right)=\left(x+1\right)\left(x+2\right)\\ \Leftrightarrow x^2-3x+2=x^2+3x+2=0\\ \Leftrightarrow6x=0\\ \Leftrightarrow x=0\left(Tm\right)\)

Vậy pt có tập nghiệm \(S=\left\{0;3;\frac{2}{3}\right\}\)

29 tháng 7 2019

\(\text{b) }\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}=12\left(\frac{x-2}{x-4}\right)^2\\ DKXD:x\ne2;x\ne4\\ \Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}\cdot\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)

Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)

\(Pt\Leftrightarrow a^2+ab-12b^2=0\\ \Leftrightarrow a^2+4ab-3ab-12b^2=0\\ \Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\\ \Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=-4b\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{x+1}{x-2}=\frac{3\left(x-2\right)}{x-4}\left(1\right)\\\frac{x+1}{x-2}=\frac{-4\left(x-2\right)}{x-4}\left(2\right)\end{matrix}\right.\)

Tự giải tiếp nha.

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

4 tháng 3 2019

pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)

đk: x khác 2

Đặt \(\frac{x^2}{x-2}=t\)

Ta có phương trình:

\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)

Với t=2 ta có:

\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí

Với t=-2:

\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)

Vậy...

\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)

\(-537x^2+5054x=-541x^2+5092x\)

\(-537x^2+5054x+541x^2-5092x=0\)

\(4x^2-38x=0\)

\(x\left(2x-19\right)=0\)

\(\orbr{\begin{cases}x=0\\2x=19\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=\frac{19}{2}\end{cases}}\)

14 tháng 2 2018

\(\frac{x-1}{x^2-x+1}-\frac{x+1}{x^2+x+1}=\frac{10}{x\left(x^4+x+1\right)}\)

\(\Leftrightarrow\frac{x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2+x+1\right)-10}{x\left(x^4+x^2+1\right)}=0\)

\(\Rightarrow x\left(x^3-1\right)-x\left(x^3+1\right)-10=0\)

\(\Leftrightarrow x^4-x-x^4-x-10=0\)

\(\Leftrightarrow-2x-10=0\)

\(\Leftrightarrow x=-5\)