K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2022

-Xét △ABC có: H∈AC, D∈BC, E∈AB ; AD, BH, CE đồng quy

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\) (định lí Ceva)

\(\Rightarrow\dfrac{DB}{DC}.\dfrac{HC}{HA}=1\Rightarrow\dfrac{HA}{HC}=\dfrac{DB}{DC}\)

\(\Rightarrow\)HD//AB (định lí Ta-let đảo)

17 tháng 4 2022

-Xét △ABC có: E thuộc AB, D thuộc BC, H thuộc AC và AD, BH, CE đồng quy tại I.

\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}.\dfrac{EB}{EA}=1\) (định lí Ceva).

\(\Rightarrow\dfrac{AH}{HC}.\dfrac{DC}{DB}=1\)

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{DB}{DC}\Rightarrow\)HD//AB.

\(\Rightarrow S_{ABD}=S_{ABH}\Rightarrow S_{ABD}-S_{ABI}=S_{ABH}-S_{ABI}\Rightarrow S_{IBD}=S_{AIH}\)

30 tháng 9 2016
  • Giải PT \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)

\(\sqrt[3]{\left(x+1\right)^2+\sqrt[3]{\left(x-1\right)^2}+\sqrt[]{x^2}-1=1}\)

27 tháng 3 2017

thử vào link này xem đi

http://pitago.vn/question/cho-tam-giac-abc-uong-trung-tuyen-ad-duong-cao-bh-duong-15.html