K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

Ta có ; \(A=\frac{3x^2-2x-1}{\left(x+1\right)^2}\) .Đặt \(y=x+1\Rightarrow x=y-1\), thay vào A :

\(A=\frac{3\left(y-1\right)^2-2\left(y-1\right)-1}{y^2}=\frac{3y^2-8y+4}{y^2}=\frac{4}{y^2}-\frac{8}{y}+3\)

Lại đặt \(t=\frac{1}{y}\)\(A=4t^2-8t+3=4\left(t^2-2t+1\right)-1=4\left(t-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi t = 1 <=> y = 1 <=> x = 0

Vậy A đạt giá trị nhỏ nhất bằng -1 khi x = 0 

3 tháng 5 2023

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!

a:6x-5-9x^2

=-(9x^2-6x+5)

=-(9x^2-6x+1+4)

=-(3x-1)^2-4<=-4

=>A>=2/-4=-1/2

Dấu = xảy ra khi x=1/3

b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)

2x^2-3x+2=2(x^2-3/2x+1)

=2(x^2-2*x*3/4+9/16+7/16)

=2(x-3/4)^2+7/8>=7/8

=>-1/2x^2-3x+2<=-1:7/8=-8/7

=>B<=-8/7+2=6/7

Dâu = xảy ra khi x=3/4

23 tháng 7 2021

f(x)=3-x-a

nghiệm đa thức bằng 2 ⇒ x=2

⇒f(2)=3-2-a=0

        ⇒1-a=0

        ⇒a=1

23 tháng 7 2021

Ta có: nghiệm đa thức bằng 2 thì f(x) = 0 

\(\Rightarrow\) f(2) = 3 - 2 - a = 0

f(2) = 1 - a  = 0

\(\Rightarrow\)a  = 1 - 0 = 1

Vậy a = 1 để nghiệm của đa thức f(x) = 3 - x - a có nghiệm là 2

10 tháng 10 2020

Bài 1:

Ta có: \(2x+\left|x-3\right|=4\)

\(\Leftrightarrow\left|x-3\right|=4-2x\)

Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

10 tháng 10 2020

Bài 2:

a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)

Vậy Min(A) = 4 khi x = -5/3

b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)

Vậy Max(B) = 10 khi x = -1/2

\(\Leftrightarrow2x\left(x+5\right)-3\left(x-2\right)=7x+1\)

\(\Leftrightarrow2x^2+10x-3x+6-7x-1=0\)

\(\Leftrightarrow2x^2+5=0\)(vô lý)

5 tháng 3 2022

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne-5\end{matrix}\right.\)

\(\dfrac{2x}{x-2}-\dfrac{3}{x+5}=\dfrac{7x+1}{x^2+3x-10}\\ \Leftrightarrow\dfrac{2x\left(x+5\right)}{\left(x+5\right)\left(x-2\right)}-\dfrac{3\left(x-2\right)}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x^2-2x+5x-10}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x\left(x-2\right)+5\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}-\dfrac{7x+1}{\left(x+5\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2+10x-3x+6-7x-1}{\left(x+5\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x^2+5}{\left(x+5\right)\left(x-2\right)}=0\\ \Rightarrow2x^2+5=0\left(vô.lí\right)\)

Vậy pt vô nghiệm

20 tháng 11 2019

1) \(A=x\left(2x-3\right)=2x^2-3x\)

\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{1,5}{\sqrt{2}}+\frac{2,25}{2}-1,125\)

\(=\left(\sqrt{2}x-\frac{1,5}{\sqrt{2}}\right)^2-1,125\ge-1,125\)

Vậy \(A_{min}=-1,125\Leftrightarrow\sqrt{2}x-\frac{1,5}{\sqrt{2}}=0\)

\(\Leftrightarrow x=\frac{3}{4}\)

20 tháng 11 2019

2) \(21^{10}-1=\left(21^5+1\right)\left(21^5-1\right)\)

Dễ thấy 215 - 1 có tận cùng  00

\(\Rightarrow21^5-1⋮100\)

Ta có 215 có tận cùng bằng 1 nên 215 + 1 chia hết cho 2 

\(\Rightarrow\left(21^5+1\right)\left(21^5-1\right)⋮200\)

hay \(21^{10}-1⋮200\)

9 tháng 9 2019

a) \(2\left(x+5\right)-3x=2x+1\)

\(\left(x+2\right)+\left(x-2x+1\right)\ge0\)

\(=\left(x+2\right)+\left(x-2+1\right)-3\ge-1\)

b)

  Bài này ta sử dụng kĩ thuật tham số hóa.

  Giả sử A đạt GTNN tại a= x, b= y, c= z khi đó x + y  +z = 3.            (1)

  Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

       a2+x2≥2axa2+x2≥2ax.          4a2≥8ax−4x24a2≥8ax−4x2.

       b2+y2≥2byb2+y2≥2by. =>    6b2≥12by−6y26b2≥12by−6y2.

       c2+z2≥2zc2+z2≥2z.           3c2≥6cz−3z23c2≥6cz−3z2.

 => A≥(8ax+12by+6cz)−(4x+6y+3z)A≥(8ax+12by+6cz)−(4x+6y+3z).

  Để sử dụng được GT thì 8x = 12y = 6z.                                          (2)

  Từ (1); (2) ta tìm ra được x, y, z=>...

c,d chịu 

\(x=-1\)

29 tháng 1 2017

a, 2x + 35 -x+27=0

   x +62=0

x=-62

b, 2x -41 -3x + 23 =0

-x -18=0

-x=18

x=-18

c, 4x -12-3x-15= -124

x -27=-124

x= -97

d, Suy ra x+3 =0 hoặc 2x-18=0

               x=-3   hoặc  2x=18 => x=9

vậy x=-3 hoặc x=9

9 tháng 8 2019

Đầu bài phải là tìm x thuộc Z sao cho phân số thuộcZ chứ

a)Để phân số \(\frac{2x+1}{x-3}\in Z\)

 \(\Leftrightarrow2x+1⋮x-3\)

\(\Leftrightarrow2x-6+7⋮x-3\)

\(\Leftrightarrow2\left(x-3\right)+7⋮x-3\)

mà \(2\left(x-3\right)⋮x-3\)

\(\Rightarrow7⋮x-3\)

\(\Rightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Tìm nốt

9 tháng 8 2019

thank you