K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2022

23.

Gọi I là trung điểm MN \(\Rightarrow I\left(3;3\right)\)

\(\Rightarrow\overrightarrow{IN}=\left(2;-1\right)\Rightarrow IN=\sqrt{5}\)

Phương trình đường tròn đường kính MN, nhận I là tâm và có bán kính \(R=IN\) là:

\(\left(x-3\right)^2+\left(y-3\right)^2=5\)

Thay tọa độ E vào pt ta được:

\(\left(x-3\right)^2+4=5\Rightarrow\left(x-3\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)  \(\Rightarrow x_1x_2=8\)

Cả 4 đáp án của câu này đều sai

NV
27 tháng 3 2022

24.

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc \(\Delta\)

Do \(\Delta\) là đường phân giác của góc tạo bởi d và k nên:

\(d\left(M;d\right)=d\left(M;k\right)\Leftrightarrow\dfrac{\left|2x+y\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|x+2y-3\right|}{\sqrt{1^2+2^2}}\)

\(\Leftrightarrow\left|2x+y\right|=\left|x+2y-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+y=x+2y-3\\2x+y=-x-2y+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y+3=0\\x+y-1=0\end{matrix}\right.\)

- Với \(x-y+3=0\), ta có: 

\(\left(x_E-y_E+3\right)\left(x_F-y_F+3\right)=2.1=2>0\Rightarrow E;F\) nằm cùng phía so với \(x-y+3=0\) (thỏa mãn)

- Với \(x+y-1=0\) ta có:

\(\left(x_E+y_E-1\right)\left(x_F+y_F-1\right)=2.7=14>0\Rightarrow E;F\) nằm cùng phía so với \(x+y-1=0\) (thỏa mãn)

Vậy cả đáp án A và D đều đúng

Tương tự như câu 23, câu 24 đề bài tiếp tục sai

4 tháng 12 2019

a^2+b^2/a^2+c^2=b^2/c^2=b^2/ab=b/a

Bạn ơi , bạn xem lại đề nhé! Mình làm thế này không biết có đúng đề không nữa?

Ta có \(a^2+c^2\ge0\)  (gt)  mà \(a^2\ge0 \forall a, c^2\ge0 \forall c\)=> \(a\ne0 , c\ne0\)=> \(b\ne0\)( vì \(ab=c^2\))

Với \(a,b,c \ne0\),  \(ab=c^2\)=> \(\frac{a}{c}=\frac{c}{b}\)

                                                      => \(\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2\)

                                                       => \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)   mà \(\frac{a}{c}=\frac{c}{b}\)

                                                     => \(\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)

11 tháng 2 2022

Bài làm của người ta mà em

11 tháng 2 2022

Anh nghĩ với bài kiểm tra em nên tự làm nhé. 

22 tháng 9 2019

XIN LỖI MK K BT VẼ HÌNH TRÊN NÀY : |_ là vuông góc nhé bạn

Vì AB |_ CD tại O

=>AOD=AOC=DOB=BOC=90 độ

Mà OM là tia pg của góc BOC

=>COM =BOM=45 độ

Ta có góc AOM = AOC +COM

=>GÓC AOM= 90 độ +45 độ=135 độ

mk nhé!

NV
23 tháng 10 2021

a.

Đặt \(sinx+cosx=t\in\left[-\sqrt{2};\sqrt{2}\right]\)

\(\Rightarrow1+2sinx.cosx=t^2\Rightarrow2sinx.cosx=t^2-1\)

Phương trình trở thành:

\(3t=2\left(t^2-1\right)\)

\(\Leftrightarrow2t^2-3t-2=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2>\sqrt{2}\left(loại\right)\\t=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow sinx+cosx=-\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{8}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=arcsin\left(-\dfrac{\sqrt{2}}{8}\right)+k2\pi\\x+\dfrac{\pi}{4}=\pi-arcsin\left(-\dfrac{\sqrt{2}}{8}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+arcsin\left(-\dfrac{\sqrt{2}}{8}\right)+k2\pi\\x=\dfrac{3\pi}{4}-arcsin\left(-\dfrac{\sqrt{2}}{8}\right)+k2\pi\end{matrix}\right.\)

NV
23 tháng 10 2021

b.

ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)

\(1+\dfrac{sinx}{cosx}=2\sqrt{2}sinx\)

\(\Rightarrow sinx+cosx=2\sqrt{2}sinx.cosx\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}sin2x\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x+\dfrac{\pi}{4}+k2\pi\\2x=\dfrac{3\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{\pi}{4}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k2\pi}{3}\)

17 tháng 12 2021

Chọn B

23 tháng 3 2022

Câu C bạn nhé!!

NV
23 tháng 3 2022

11. 

Đường tròn (C) tâm \(I\left(4;3\right)\) bán kính \(R=\sqrt{2}\)

\(d\left(I;\Delta\right)=\dfrac{\left|4+3-11\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}\)

\(\Rightarrow d\left(M;\Delta\right)_{max}=R+d\left(I;\Delta\right)=\sqrt{2}+2\sqrt{2}=3\sqrt{2}\)