Cho ΔABC vuông tại C có CB = 6cm, AC = 8cm. Vẽ đường cao CH của ΔABC.
a/ Chứng minh: CH.BA = CB.AC. b/ Tính độ dài các đoạn CH
c/ Vẽ HD vuông góc với CB tại D, HE vuông góc với AC tại E. Tính khoảng cách từ trung điểm I của BA đến DE.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
7 tháng 4 2023
a: Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
góc B chung
=>ΔBAC đồng dạng với ΔBDE
b: Xét ΔCHA vuông tại H và ΔCKD vuông tại K có
góc HCA=góc KCD
=>ΔCHA đồng dạngvơi ΔCKD
=>CH/CK=CA/CD
=>CH*CD=CK*CA
8 tháng 4 2022
a: Xét ΔAHB vuông tại H và ΔADH vuông tại D có
góc HAB chung
Do đó: ΔAHB\(\sim\)ΔADH
Xét ΔAHC vuông tại H và ΔAEH vuông tại E có
góc HAC chung
Do đó: ΔAHC\(\sim\)ΔAEH
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)