K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-5^2=75\)

hay \(AC=5\sqrt{3}cm\)

Vậy: \(AC=5\sqrt{3}cm\)

a: \(AC=5\sqrt{3}\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE

hay B nằm trên đường trung trực của AE(1)

Ta có: ΔABD=ΔEBD

nên DA=DE
nên D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD⊥AE

 

17 tháng 4 2021

Đáp án:

a) 

Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)

b) Xét ΔABD và ΔEBD vuông tại A và E có:

+góc ABD = góc EBD

+ BD chung

=>ΔABD = ΔEBD (cg-gn)

c) Xét ΔABC và ΔEBF vuông tại A và E có:

+ AB = EB (do ΔABD = ΔEBD)

+ góc ABC chung

=>ΔABC = ΔEBF (cgv-gn)

d) Do ΔABC = ΔEBF nên BC = BF

Xét ΔBFG và ΔBCG có:

+ BF = BC
+ BG chung

+ FG = CG

=> ΔBFG = ΔBCG (c-c-c)

=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D

=> AC,BG, EF đồng quy tại D.

image

17 tháng 4 2021

a) 

Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)

b) Xét ΔABD và ΔEBD vuông tại A và E có:

+góc ABD = góc EBD

+ BD chung

=>ΔABD = ΔEBD (cg-gn)

c) Xét ΔABC và ΔEBF vuông tại A và E có:

+ AB = EB (do ΔABD = ΔEBD)

+ góc ABC chung

=>ΔABC = ΔEBF (cgv-gn)

d) Do ΔABC = ΔEBF nên BC = BF

Xét ΔBFG và ΔBCG có:

+ BF = BC
+ BG chung

+ FG = CG

=> ΔBFG = ΔBCG (c-c-c)

=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D

=> AC,BG, EF đồng quy tại D.

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên DA=DE

Ta có: ΔABD=ΔEBD

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE⊥BC

5 tháng 1 2022

a: Xét ΔABD và ΔEBD có

BA=BE

ˆABD=ˆEBDABD^=EBD^

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên DA=DE

Ta có: ΔABD=ΔEBD

15 tháng 4 2016

a) Ap dụng định lí Py ta go trông tam giác vuông ABC

Ta có : AC^2 = BC^2 - AB^2

           AC^2 = 10^2 - 5^2

           AC^2 =75

           AC ^ 2 = \(\sqrt{75}\)

          .....

đÚNG NHA Lê Vân

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

b: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE