tính tổng
B=6/1x3+6/3x5+....+6/97x99
cần gấp nha
thanks nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{6}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-............+\frac{1}{97}-\frac{1}{99}\right).\\ \)
\(=\frac{6}{2}\left(1-\frac{1}{97}\right)\)
tới đây tính máy là ra luôn
Tính nhanh
a) 5/1x3 + 5/3x5 + 5/5x7 + ........ + 5/43x45
b) 6/1x4 + 6/4x7 + 6/7x10 + ...... + 6/97x100
\(a,\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{43.45}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{43.45}\right)=\frac{5}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{45}\right)=\frac{5}{3}.\frac{44}{45}=\frac{44}{27}\)
Ta có:
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{199.201}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{199.201}\right)\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\right)\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{201}\right)=\frac{1}{2}.\frac{200}{201}=\frac{100}{201}\)
Còn bài kế tiếp mình không rõ quy luật nên không có giúp bạn được.
1/2 x (6/1-6/3+6/3-6/5+ ... +6/37-6/39)
1/2 x (6/1-6/39)
1/2 x 228/39
228/78
\(A=\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{97.99}\)
\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(A=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(A=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)
\(\Leftrightarrow A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
\(\Leftrightarrow A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Leftrightarrow A=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)
B = \(\frac{6}{1.3}+\frac{6}{3.5}+...+\frac{6}{97.99}=3.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
=\(3.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)=3.\left(1-\frac{1}{99}\right)=3.\frac{98}{99}=\frac{98}{33}\)
\(B=\frac{6}{1.3}+\frac{6}{3.5}+...+\frac{6}{97.99}\)
\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
\(=3\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=3\left(1-\frac{1}{99}\right)\)
\(=\frac{98}{33}\)