Giúp mình 4 câu này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12.
Từ đồ thị ta thấy \(M=2\) ; \(m=-4\Rightarrow M+m=-2\)
13.
Đáp án đúng là B
Hàm số ko có max trên đoạn đã cho
14.
Từ đồ thị ta thấy \(M=3;m=-2\Rightarrow M+m=1\)
15.
Từ đồ thị ta thấy \(M=5;m=-4\Rightarrow M-m=9\)
\(2.16\ge2^n>4\)
\(2.2^4\ge2^n>2^2\)
\(2^5\ge2^n>2^2\)
=> \(n\in\left\{3,4,5\right\}\)
Vậy: \(n\in\left\{3,4,5\right\}\)
Mình chỉ làm một bài thôi, còn những bài còn lại bạn giải theo cách tương tự nha
24) ĐKXĐ: \(x\notin\left\{-2;2\right\}\)
Ta có: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2-5x}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2-3x+2-x^2-2x=2-5x\)
\(\Leftrightarrow-5x+2-2+5x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{2;-2\right\}\)}
\(9.27\le3n\le243\\ =>9.27:3\le3n:3\le243:3\\=>81\le n\le81\\ =>n=81\)
\(9.27\le3^n\le243\)
\(3.3^3\le3^n\le3^5\)
\(3^4\le3^n\le3^5\)
\(n\in\left\{4,5\right\}\)
Vậy: \(n\in\left\{4,5\right\}\)
\(2.\left|x\right|-5.\left|x\right|=-9\)
\(\Leftrightarrow\left|x\right|.\left(2-5\right)=-9\)
\(\Leftrightarrow\left|x\right|.-3=-9\)
\(\Leftrightarrow\left|x\right|=3\)
\(\Leftrightarrow x=\pm3\)
Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)
\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 19 số hạng )
\(A>\frac{19}{20}\)
7.
\(\sqrt{4-x}\ge0\Rightarrow\sqrt{4-x}+\sqrt{3}\ge\sqrt{3}\) đáp án D
8.
\(y=x^2+\dfrac{1}{2x}+\dfrac{1}{2x}\ge3\sqrt[3]{\dfrac{x^2}{4x^2}}=\dfrac{3}{\sqrt[3]{4}}\)
Dấu "=" xảy ra khi \(x^2=\dfrac{1}{2x}\Leftrightarrow x=\dfrac{1}{\sqrt[3]{2}}\) đáp án D
9.
\(y\ge2\sqrt{\dfrac{2x}{x}}-\left(1+\sqrt{2}\right)^2=2\sqrt{2}-\left(3+2\sqrt{2}\right)=-3\) đáp án B
10.
\(y'=\dfrac{1-2x}{\left(x-2\right)^2\sqrt{x^2-1}}\Rightarrow\) hàm đồng biến trên \((-\infty;-1]\) và nghịch biến trên \(\left[1;\dfrac{3}{2}\right]\)
\(f\left(-1\right)=f\left(1\right)=0\) ; \(f\left(\dfrac{3}{2}\right)=-\sqrt{5}\)
\(\Rightarrow f\left(x\right)_{max}=0\) ; \(f\left(x\right)_{min}=-\sqrt{5}\) đáp án A
11.
\(f'\left(x\right)=\dfrac{5-x}{\left(x^2+2\right)\sqrt{x^2+5}}=0\Rightarrow x=5\) \(\Rightarrow f\left(5\right)=\dfrac{\sqrt{30}}{5}\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=1\) ; \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-1\)
Hàm đạt GTLN tại \(x=5\) và ko có GTNN, đáp án D