Cho tam giác ABC, hai đường trung tuyến BD và CE vuông góc với nhau. Biết AB=5cm, AC=10cm.Vậy BC=?cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BC = 5 cm
t i c k nhé!! 6566457756756658769346456576576876879876245245435
BC = 5 cm
violympic mà cx phải giải chi tiết ak??
45645764575678768769780845735732156364576576587687
Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.]
Áp dụng định lý pythagore vào tam giác vuông BGE ta có:
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1)
Áp dụng định lý pythagore vào tam giác vuông CGD ta có:
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2)
mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có:
BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=>
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=>
BC = 2.(căn 5) cm
Gọi G là giao điểm của BD và CE. Ta có G là trọng tâm của △ABC
Đặt GD=x,GE=y. Khi đó GB=2x,GC=2y.
Áp dụng định lý Pitago cho các tam giác vuông BGE, CGD, ta có:
GE2+GB2=BE2⇒y2+4x2=9 (1)
GD2+GC2=CD2⇒x2+4y2=16 (2)
Từ (1) và (2) ta có: 5(x2+y2)=25
⇒x2+y2=5
Áp dụng định lý Pitago cho tam giác vuông BGC, ta có:
BC2=GB2+GC2=4x2+4y2=20
Vậy: BC = \(\sqrt[2]{5}\)
tam giác ABC, hai đường trung tuyến BD và CE vuông góc với nhau. Biết AB=5 và AC=10. Tính cạnh BC= ?
AE = BE = 2,5 ; AD = DC = 5
Gọi CE giao BD tại G
Đặt GE = x ; GD = y => GC = 2x ; GB = 2y
Tam giác GBE vt G có x^2 + 4y^2 = 2,5^2 (1)
Tam giác GDC v tại G => y^2 + 4x^2 = 5^2 (2)
Từ (1) và (2) => 5 (x^2 + y^2 ) = 2.5^2 + 5^2 => x^2 + y^2 = ....
Tam giác BGC v tại G => 4x^2 + 4y^2 = BC^2
<=> 4(x^2 + y^2 ) = BC^2 => BC = ...