K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật

a: Xét ΔABN vầ ΔACM có

AB=AC

góc A chung

AN=AM

=>ΔABN=ΔACM

=>BN=CM

b: Xét ΔNAE và ΔNCB có

góc NAE=góc NCB

NA=NC

góc ANE=góc CNB

=>ΔNAE=ΔNCB

=>AE=CB

Xét ΔMDA và ΔMCB có

góc MAD=góc MBC

MA=MB

góc AMD=góc BMC

=>ΔMDA=ΔMCB

=>AD=BC=AE

=>A là trug điểm của DE

c: Xét tứ giác ADBC có

AD//BC

AD=BC

=>ADBC là hình bình hành

=>DB=AC=BA

Xét tứ giác ABCE có

N là trung điểm chung của AC và BE

=>ABCE là hìh bình hành

=>CE=AB=DB

11 tháng 7 2019

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

30 tháng 12 2021

a: Xét ΔHAB có 

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB

hay ABNM là hình thang

10 tháng 6 2019

Em không vẽ được hình, xin thông cảm

a, Ta có góc EAN=  cungEN=cung EC+ cung EN

Mà cung EC= cung EB(E là điểm chính giữa cung BC)

=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)

=> tam giác AEN đồng dạng tam giác FED

Vậy tam giác AEN đồng dạng tam giác FED

b,Ta có EC=EB=EM

Tam giác EMC cân tại E => EMC=ECM

 MÀ EMC+AME=180, ECM+ABE=180

=> AME = ABE

=> tam giác ABE= tam giác AME

=> AB=AM => tam giác ABM cân tại A

Mà AE là phân giác => AE vuông góc BM

CMTT => AC vuông góc EN

MÀ AC giao BM tại M

=> M là trực tâm tam giác AEN

Vậy M là trực tâm tam giác AEN

c,  Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH

Vì M là trực tâm của tam giác AEN

=> \(EN\perp AN\)

Mà \(OI\perp AN\)(vì I là trung điểm của AC)

=> \(EN//OI\)

MÀ O là trung điểm của EH

=> I là trung điểm của MH (đường trung bình trong tam giác )

=> tứ giác AMNH là hình bình hành 

=> AH=MN

Mà MN=NC

=> AH=NC

=> cung AH= cung NC

=> cung AH + cung KC= cung KN

Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )

NBK là góc nội tiếp chắn cung KN

=> gócKMC=gócKBN

Hay gócKMC=gócKBM

=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)

Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK

10 tháng 6 2019

Anh Khang nè,e cung cấp hình nha:3

3 tháng 3 2020

A B C H K E N M a, ^BAC + ^BAK = 180 (kề bù)

^BAC = 135 (gt)

=> ^BAK = 45

xét ΔAKB có : ^AKB = 90

=> ΔAKB vuông cân  (dấu hiệu)

b, ^KBC = 90 - ^KCB 

^CAH = 90 - ^ACH 

=> ^CAH = ^ABK 

^CAH = ^KAE (đối đỉnh)

=> ^ABK = ^KAE 

xét ΔAKE và ΔBKC có : ^CKB = ^AKE = 90

AK = KB do ΔAKB cân tại K (câu a)

=> ΔAKE = ΔBKC (cgv-gnk)

=> AE = BC (định nghĩa)

c, kẻ MK

xét ΔMNE và ΔMNK có : MN chung

^MNE = ^MNK = 90 

NE = NK do N là trung điểm của EK (Gt)

=> ΔMNE = ΔMNK (2cgv)

=> MN = MK (định nghĩa)                                            (1)

      ^EMN = ^KMN (định nghĩa)                                     (2)

MN ⊥ BE ; CK ⊥ BE => MN // CK (định lí)

=> ^EMN = MCK (đồng vị)

     ^NMK = ^MKC (so le trong)

và (2)

=> ^MCK = ^MKC 

=> ΔMKC cân tại M (dấu hiệu)

=> MK = MC (định nghĩa)   và (1)

=> ME = MC mà M nằm giữa C và E

=> M là trung điểm của EC