K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2021

a) ĐKXĐ: a2-1 ≠0 ⇔ (a-1)(a+1)≠0 ⇔\(\left[{}\begin{matrix}a-1\ne0\\a+1\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ne1\\a\ne-1\end{matrix}\right.\)

b) A=\(\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\) , a≠1, -1

      =\(\dfrac{2a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\dfrac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)

      =\(\dfrac{2a^2-a\left(a-1\right)+a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)

      =\(\dfrac{2a^2-a^2+a+a^2+a}{\left(a-1\right)\left(a+1\right)}\)

      =\(\dfrac{2a^2+2a}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a}{a-1}\)

vậy A =\(\dfrac{2a}{a-1}\) với a≠1,-1.

c) Có:A= \(\dfrac{2a}{a-1}\) = \(\dfrac{2a-2+2}{a-1}=\dfrac{2\left(a-1\right)+2}{a-1}=2+\dfrac{2}{a-1}\)

Để a∈Z thì a-1 ∈ Z ⇒ (a-1) ∈ Ư(2) =\(\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

a-11-12-2
a203-1
Thử lạiTMTMTMko TM(vì a≠-1

Vậy để biểu thức A có giá trị nguyên thì a∈\(\left\{2;0;3\right\}\)

 

a) ĐKXĐ: \(a\notin\left\{1;-1\right\}\)

b) Ta có: \(A=\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\)

\(=\dfrac{2a^2}{\left(a+1\right)\left(a-1\right)}-\dfrac{a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}+\dfrac{a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a^2-a^2+a+a^2+a}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a^2+2a}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a}{a-1}\)

c) Để A nguyên thì \(2a⋮a-1\)

\(\Leftrightarrow2a-2+2⋮a-1\)

mà \(2a-2⋮a-1\)

nên \(2⋮a-1\)

\(\Leftrightarrow a-1\inƯ\left(2\right)\)

\(\Leftrightarrow a-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow a\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(a\in\left\{0;2;3\right\}\)

Vậy: Để A nguyên thì \(a\in\left\{0;2;3\right\}\)

25 tháng 12 2016

a, ĐKXĐ: x\(\ne\) 1;-1;2

b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)

=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)

=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)

=\(\frac{x-2}{x-1}\)

c, Khi x= -1

→A= \(\frac{-1-2}{-1-1}\)

= -3

Vậy khi x= -1 thì A= -3

Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^

26 tháng 12 2016

a,ĐKXĐ:x#1; x#-1; x#2

b,Ta có:

A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)

=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)

=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)

=\(\frac{x-2}{x+1}\)

c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả

d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên

\(\Leftrightarrow x-2⋮x+1\)

\(\Leftrightarrow x+1-3⋮x+1\)

\(x+1⋮x+1\Rightarrow3⋮x+1\)

\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)

Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)

Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên

29 tháng 1 2023

đề bài lỗi bn ơi

29 tháng 1 2023

ib rieng bn

 

29 tháng 12 2021

a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

5 tháng 1 2023

a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)

Có vài bước mình làm tắc á nha :>