Cho (P) / (y ^ 2) = x và 2 điểm A(1;-1),B(9;3) . Gọi M là một điểm thuộc cung AB của (P) phần của (P) bị chắn bởi dây AB . Xác định vị trí của M trên cung AB sao cho diện tích tam giác MAB lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2-x-\dfrac{3}{2}=0\)
\(\Leftrightarrow x^2-2x-3=0\)
=>(x-3)(x+1)=0
=>x=3 hoặc x=-1
KHi x=3 thì \(y=\dfrac{1}{2}x^2=\dfrac{9}{2}\)
Khi x=-1 thì \(y=\dfrac{1}{2}x^2=\dfrac{1}{2}\)
a: Phương trình hoành độ giao điểm là:
\(-x^2-mx-2=0\)
\(\Leftrightarrow x^2+mx+2=0\)
\(\Delta=m^2-8\)
Để (P) cắt (d) tại 1 điểm duy nhất thì Δ=0
hay \(m\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
b: Thay x=-2 vào (P), ta được:
\(y=-\left(-2\right)^2=-4\)
hay m=-4
1) Thay x=-2 và y=2 vào hàm số y=-2(x+1), ta được:
\(-2\cdot\left(-2+1\right)=\left(-2\right)\cdot\left(-1\right)=2=y\)
Vậy: A(-2;2) thuộc (d1)
\(x^2\left(y-1\right)-4\left(y-1\right)\\ =\left(y-1\right)\left(x^2-4\right)=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)
Gọi \(M\left(m^2;m\right)\) với \(-1< m< 3\)
\(\Rightarrow S_{MAB}=\dfrac{1}{2}\left|\left(x_M-x_A\right)\left(y_B-y_A\right)-\left(x_B-x_A\right)\left(y_M-y_A\right)\right|\)
\(=\dfrac{1}{2}\left|4\left(m^2-1\right)-8\left(m+1\right)\right|=2\left|m^2-2m-3\right|\)
Do \(m^2-2m-3< 0;\forall m\in\left(-1;3\right)\)
\(\Rightarrow S=-2\left(m^2-2m-3\right)=8-2\left(m-1\right)^2\le8\)
Dấu "=" xảy ra khi \(m=1\) hay \(M\left(1;1\right)\)