K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Tự thay điểm P bằng điểm K theo đầu bài của bạn

 Nối H với N và P với M.

HM thuộc BC => HM // PN => tứ giác MNPH là hình thang

Xét tam giác ABC có:

 AP = PB

 BM = MC .

=> PM là đường trung bình của tam giác ABC => PM = \(\frac{1}{2}\)AC  (3)

 - Tam giác AHC vuông tại H có HN là đg trung tuyến ứng với cạnh huyền AC 

=> HN =\(\frac{1}{2}\) AC  (4)

Từ (3) và (4) => PM = HN (vì cùng = \(\frac{1}{2}\) AC)

Hình thang MNPH có PM = HN => MNPH là hình thang cân (dấu hiệu)

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

=>AM/AC=AN/AB

=>góc AMN=góc ACB

=>góc NMB+góc NCB=180 độ

=>NMBC nội tiếp

b: kẻ đường kính AL

góc ACL=90 độ

AC*AN=AH^2

ΔAIN đồng dạng với ΔACE

=>AI/AC=AN/AE

=>AI*AE=AH^2

góc ADE=90 độ

=>ΔADE vuông tại D

=>AI*AE=AD^2=AH^2

=>AD=AH

Xét ΔAHC có

I là trung điểm của AH

N là trung điểm của AC

DO đó: IN là đường trung bình của ΔAHC

Suy ra: \(IH=3cm\)

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Lời giải:

$M,N$ lần lượt là trung điểm $AB, AC$ nên $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

$\Rightarrow MN\parallel BC$ hay $MN\parallel HP$

$\Rightarrow MNPH$ là hình thang $(*)$

Mặt khác:
Tam giác vuông $ABH$ có $HM$ là đường trung tuyến ứng với cạnh huyền nên $HM=\frac{AB}{2}=MB$ (bổ đề quen thuộc)

$\Rightarrow $MHB$ cân tại $M$

$\Rightarrow \widehat{MHB}=\widehat{MBH}$

Mà $\widehat{MBH}=\widehat{NPC}$ (hai góc đồng vị với $NP\parallel AB$)

$\Rightarrow \widehat{MHB}=\widehat{NPC}$

$\Rightarrow 180^0-\widehat{MHB}=180^0-\widehat{NPC}$

Hay $\widehat{MHP}=\widehat{NPH}(**)$

Từ $(*); (**)\Rightarrow $MNPH$ là hình thang cân (đpcm)

AH
Akai Haruma
Giáo viên
6 tháng 9 2021

Hình vẽ: 

18 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình của ΔBAC

Suy ra: MN//BC

Xét ΔABH có 

M là trung điểm của AB

MI//BH

Do đó:I là trung điểm của AH