Giải bpt
x + \(\sqrt{x-2}\) ≤ 2 + \(\sqrt{x-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ \(x\ge1\)
\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)
\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)
\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)
\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)
Vậy nghiệm của BPT là \(1\le x< 2\)
b/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)
\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)
\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)
\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)
\(\Rightarrow3\le x< 4\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)
\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)
- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(x\ge\frac{2}{3}\) hai vế ko âm
\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)
\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)
Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)
Biết là hơi làm phiền nhưng anh có thể giúp em được k ạ :
Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến
ĐK: \(x\ge1;x\le-2\)
\(\sqrt{x^2-1}+\sqrt{x^2-x}\le\sqrt{x^2+x-2}\)
\(\Leftrightarrow2x^2-x-1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le x^2+x-2\)
\(\Leftrightarrow x^2-2x+1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)
\(\Leftrightarrow\left(x-1\right)^2+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(x^2-1\right)\left(x^2-x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy bất phương trình có nghiệm \(x=1\)
Điều kiện xác định : \(2x^2-3x-5\ge0\Leftrightarrow\left(x+1\right)\left(2x-5\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge\frac{5}{2}\\x\le-1\end{cases}}\)
Ta có : \(1-x+2\sqrt{2x^2-3x-5}< 0\Leftrightarrow2\sqrt{2x^2-3x-5}< x-1\)
Bình phương hai vế : \(4\left(2x^2-3x-5\right)< x^2-2x+1\)
\(\Leftrightarrow7x^2-10x-21< 0\)
Tới đây lập bảng xét dấu là ra nhé :)
(Cần chú ý tới điều kiện của bài toán)
ĐKXĐ: \(x\ge2\)
BĐT trở thành:
\(x+\sqrt{x-2}\le2+\sqrt{x-2}\Rightarrow x\le2\)
Kết hợp điều kiện ban đầu ta được: \(x=2\)
Vậy BPT có nghiệm duy nhất \(x=2\)