Cho tam giác ABC vuông tại A(AC>AB), đường cao AH. Trên tia HC lấy điểm D sao cho HD=HA.Đường thẳng vuông góc với BC tại D cắt AC tại E
a.C/m AB2=BH.BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC∼ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=BH\cdot HC\)
c: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
Do đó: ΔCDE\(\sim\)ΔCAB
Suy ra: CD/CA=CE/CB
hay \(CD\cdot CB=CA\cdot CE\)
a/ Xét tam giác ABC và tam giác HAC có:
+ \(\widehat{C}chung.\)
+ \(\widehat{BAC}=\widehat{AHC}=90^o.\)
\(\Rightarrow\) Tam giác ABC ∼ Tam giác HAC (g - g).
b/ Xét tam giác ABC vuông tại A; AH là đường cao:
\(AH^2=BH.HC\) (Hệ thức lượng).
c/ Xét tam giác ABC và tam giác DEC có:
+ \(\widehat{C}chung.\)
+ \(\widehat{BAC}=\widehat{EDC}=90^o.\)
\(\Rightarrow\) Tam giác ABC ∼ Tam giác DEC (g - g).
d/ Tam giác ABC ∼ Tam giác DEC (cmt).
\(\Rightarrow\dfrac{BC}{EC}=\dfrac{AC}{DC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)
Xét tam giác BEC và tam giác ADC có:
+ \(\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)
+ \(\widehat{C}chung.\)
\(\Rightarrow\) Tam giác BEC ∼ Tam giác ADC (c - g - c).
Ta có ∆AHD có AH = HD và AHD = 90 nên ∆AHD vuông cân tại H
=> HAD = HDA = 45
=> ADE = 90 - HDA = 45
Tứ giác ABDE nội tiếp đường tròn vì có ABE + BDE = 180
=> ABE = ADE = 45 (1)
Mà ∆ABE lại có ABE = 90 (2)
Từ (1) và (2) => ∆ABE vuông cân tại A
=> AB = AE
a/ Ta có AE // AH( vì cùng vuông góc BC)
=> HD/HC = AE/AC
=> AC.HD = AE.HC (1)
Ta lại có AB = AE (2)
AH = HD (3)
Từ (1), (2), (3) => AB.HC = AC.AH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD*CB=CA*CE
Đáp án:
a) △ABC∽△HAC△ABC∽△HAC
b) EC.AC=DC.BCEC.AC=DC.BC
c) △BEC∽△ADC△BEC∽△ADC, △ABE△ABE vuông cân tại A
Giải thích các bước giải:
a)
Xét △ABC△ABC và △HAC△HAC:
ˆBAC=ˆAHC(=90o)BAC^=AHC^(=90o)
ˆCC^: chung
→△ABC∽△HAC→△ABC∽△HAC (g.g)
b)
Xét △DEC△DEC và △ABC△ABC:
ˆEDC=ˆBAC(=90o)EDC^=BAC^(=90o)
ˆCC^: chung
→△DEC∽△ABC→△DEC∽△ABC (g.g)
→DCEC=ACBC→EC.AC=DC.BC→DCEC=ACBC→EC.AC=DC.BC
c)
Xét △BEC△BEC và △ADC△ADC:
DCEC=ACBCDCEC=ACBC (cmt)
ˆCC^: chung
→△BEC∽△ADC→△BEC∽△ADC (c.g.c)
Ta có: AH⊥BC,ED⊥BCAH⊥BC,ED⊥BC (gt)
→AH//ED→AH//ED
△AHC△AHC có AH//EDAH//ED (cmt)
→AEAC=HDHC→AEAC=HDHC (định lý Talet)
Mà HD=HAHD=HA (gt)
→AEAC=HAHC→AEAC=HAHC
Lại có: △ABC∽△HAC△ABC∽△HAC (cmt)
→ABAC=HAHC→ABAC=HAHC
→AEAC=ABAC→AE=AB→AEAC=ABAC→AE=AB
→△ABE→△ABE cân tại A
Có: AB⊥AE(AB⊥AC)AB⊥AE(AB⊥AC)
→△ABE→△ABE vuông cân tại A
a,Xét \(\Delta HBA\) và \(\Delta ABC\) có :
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
\(\Rightarrow AB^2=BH.BC\)