Cho a, b, c ≥ 0 thỏa mãn các điều kiện sau
a + b + c > 0
b + c ≥ 2a
Cho x, y, z >0 với xyz =1
CMR
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Xét hiệu:
$x^3+y^3-xy(x+y)=(x^3-x^2y)-(xy^2-y^3)=x^2(x-y)-y^2(x-y)$
$=(x-y)(x^2-y^2)=(x-y)^2(x+y)\geq 0$ với mọi $x,y\geq 0$
$\Rightarrow x^3+y^3\geq xy(x+y)$
Dấu "=" xảy ra khi $x=y$
b.
Áp dụng BĐT phần a vô:
$x^3+y^3\geq xy(x+y)$
$\Rightarrow x^3+y^3+1\geq xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)$
$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$
Hoàn toàn tương tự với các phân thức còn lại suy ra:
$\text{VT}\geq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=1$
Ta có :
\(x=\frac{ax}{yz}+\frac{b}{z}+\frac{c}{y}\)
\(y=\frac{a}{z}+\frac{by}{zx}+\frac{c}{x}\)
\(z=\frac{a}{y}+\frac{b}{x}+\frac{xy}{cz}\)
\(\Rightarrow\)\(x+y+z=\left(\frac{ax}{yz}+\frac{by}{zx}+\frac{cz}{xy}\right)+\frac{b+c}{x}+\frac{c+a}{y}+\frac{a+b}{z}>\frac{b+c}{z}+\frac{c+a}{y}+\frac{a+b}{z}\)
\(\ge\frac{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}{x+y+z}\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2>\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\Leftrightarrow\)\(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ( đpcm )
Xét \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)
\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)
Xét \(x+y+z\ne0\) thì ta có:
\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)
\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)
Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)
Nếu bị lỗi thì bạn có thể xem đây nhé: