Cho a,b,c,d là các số thực dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{\left(a+c\right)^2}{\left(a+c\right)\left(a+b\right)}+\dfrac{\left(b+d\right)^2}{\left(b+c\right)\left(b+d\right)}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)\left(c+d\right)}+\dfrac{\left(d+b\right)^2}{\left(d+a\right)\left(d+b\right)}\)
\(VT\ge\dfrac{\left(2a+2b+2c+2d\right)^2}{\left(a+b\right)\left(a+c\right)+\left(b+c\right)\left(b+d\right)+\left(a+c\right)\left(c+d\right)+\left(a+d\right)\left(b+d\right)}=\dfrac{4\left(a+b+c+d\right)^2}{\left(a+b+c+d\right)^2}=4\)
Dấu "=" xảy ra khi \(a=b=c=d\)
\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\\ \Rightarrow ad+ab< bc+ab\\ \Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)
Câu trắc nghiệm này kinh thật :D
\(P=\left(1+36abc\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+36\left(ab+bc+ca\right)\)
\(P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+36\left(ab+bc+ca\right)\)
\(P=\dfrac{a^2+b^2}{ab}+\dfrac{b^2+c^2}{bc}+\dfrac{c^2+a^2}{ca}+3+36\left(ab+bc+ca\right)\)
\(P=\dfrac{\left(a+b\right)^2}{ab}+\dfrac{\left(b+c\right)^2}{bc}+\dfrac{\left(c+a\right)^2}{ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{\left(2a+2b+2c\right)^2}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{4}{ab+bc+ca}+36\left(ab+bc+ca\right)-3\)
\(P\ge2\sqrt{\dfrac{144\left(ab+bc+ca\right)}{ab+bc+ca}}-3=21\)
Vậy \(P\ge21\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\ge c+d\\b\ge c+d\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-c\ge d\ge0\\b-d\ge c\ge0\end{matrix}\right.\)
\(\Rightarrow\left(a-c\right)\left(b-d\right)\ge cd\)
\(\Leftrightarrow ab-bc-ad+cd\ge cd\)
\(\Leftrightarrow\) \(ab\ge ad+bc\left(đpcm\right)\)
Ta có : (a+b)/(a+b+c)<(a+b)/(a+b+c+d) ; (b+c)/(b+c+d)<(b+c)/(a+b+c+d) ; (c+d)/(c+d+a)>(c+d)(a+b+c+d) ; (a+d)/(a+b+d)>(a+d)(a+b+c+d)
Cộng 4 bất đẳng thức trên rồi rút gọn vế phải sẽ ra kết quả như đề bài
Trên trường tui không nghĩ ra về nhà mới phát hiên ra được
Cho mk hỏi bạn TMDuc va TNVuong thi cùng trường à. Sao lại có bài chung thế.